Ramezani Maryam, Ahadinia Aryan, Farhadi Erfan, Rabiee Hamid R
Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
Sci Rep. 2024 Dec 28;14(1):31053. doi: 10.1038/s41598-024-82286-x.
Numerous algorithms have been proposed to infer the underlying structure of the social networks via observed information propagation. The previously proposed algorithms concentrate on inferring accurate links and neglect preserving the essential topological properties of the underlying social networks. In this paper, we propose a novel method called DANI to infer the underlying network while preserving its structural properties. DANI is constructed using the Markov transition matrix, which is derived from the analysis of time series cascades and the observation of node-node similarity in cascade behavior from a structural perspective. The presented method has linear time complexity. This means that it increases with the number of nodes, cascades, and the square of the average length of cascades. Moreover, its distributed version in the MapReduce framework is scalable. We applied the proposed approach to both real and synthetic networks. The experimental results indicated DANI exhibits higher accuracy and lower run time compared to well-known network inference methods. Furthermore, DANI preserves essential structural properties such as modular structure, degree distribution, connected components, density, and clustering coefficients. Our source code is available on GitHub ( https://github.com/AryanAhadinia/DANI ).
已经提出了许多算法,通过观察到的信息传播来推断社交网络的潜在结构。先前提出的算法专注于推断准确的链接,而忽略了保留潜在社交网络的基本拓扑属性。在本文中,我们提出了一种名为DANI的新方法,用于在保留其结构属性的同时推断潜在网络。DANI是使用马尔可夫转移矩阵构建的,该矩阵是从时间序列级联分析以及从结构角度对级联行为中节点-节点相似性的观察中得出的。所提出的方法具有线性时间复杂度。这意味着它随着节点数量、级联数量以及级联平均长度的平方而增加。此外,其在MapReduce框架中的分布式版本是可扩展的。我们将所提出的方法应用于真实网络和合成网络。实验结果表明,与知名的网络推断方法相比,DANI具有更高的准确性和更低的运行时间。此外,DANI保留了诸如模块结构、度分布、连通分量、密度和聚类系数等基本结构属性。我们的源代码可在GitHub上获取(https://github.com/AryanAhadinia/DANI)。