Suppr超能文献

LazyFox:大型图中快速且并行化的重叠社区检测

LazyFox: fast and parallelized overlapping community detection in large graphs.

作者信息

Garrels Tim, Khodabakhsh Athar, Renard Bernhard Y, Baum Katharina

机构信息

Hasso Plattner Institute for Digital Engineering gGmbH, Potsdam, Germany.

Digital Engineering Faculty, University of Potsdam, Potsdam, Germany.

出版信息

PeerJ Comput Sci. 2023 Apr 20;9:e1291. doi: 10.7717/peerj-cs.1291. eCollection 2023.

Abstract

The detection of communities in graph datasets provides insight about a graph's underlying structure and is an important tool for various domains such as social sciences, marketing, traffic forecast, and drug discovery. While most existing algorithms provide fast approaches for community detection, their results usually contain strictly separated communities. However, most datasets would semantically allow for or even require overlapping communities that can only be determined at much higher computational cost. We build on an efficient algorithm, Fox, that detects such overlapping communities. Fox measures the closeness of a node to a community by approximating the count of triangles which that node forms with that community. We propose LazyFox, a multi-threaded adaptation of the Fox algorithm, which provides even faster detection without an impact on community quality. This allows for the analyses of significantly larger and more complex datasets. LazyFox enables overlapping community detection on complex graph datasets with millions of nodes and billions of edges in days instead of weeks. As part of this work, LazyFox's implementation was published and is available as a tool under an MIT licence at https://github.com/TimGarrels/LazyFox.

摘要

在图数据集中检测社区能洞察图的潜在结构,并且是社会科学、市场营销、交通预测和药物发现等各个领域的重要工具。虽然大多数现有算法提供了用于社区检测的快速方法,但其结果通常包含严格分离的社区。然而,大多数数据集在语义上允许甚至需要重叠社区,而这只能以高得多的计算成本来确定。我们基于一种高效算法Fox构建,该算法可检测此类重叠社区。Fox通过近似节点与该社区形成的三角形数量来衡量节点与社区的接近程度。我们提出了LazyFox,它是Fox算法的多线程改编版本,能在不影响社区质量的情况下实现更快的检测。这使得能够分析规模显著更大、更复杂的数据集。LazyFox能在数天而非数周内对具有数百万个节点和数十亿条边的复杂图数据集进行重叠社区检测。作为这项工作的一部分,LazyFox的实现已发布,并作为一个工具在https://github.com/TimGarrels/LazyFox上以麻省理工学院许可协议提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e9/10280410/c36ea9321d07/peerj-cs-09-1291-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验