Rotejanaprasert Chawarat, Chinpong Kawin, Lawson Andrew B, Maude Richard J
Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Sci Rep. 2024 Dec 28;14(1):31064. doi: 10.1038/s41598-024-82212-1.
Dengue fever poses a significant public health burden in tropical regions, including Thailand, where periodic epidemics strain healthcare resources. Effective disease surveillance is essential for timely intervention and resource allocation. Various methods exist for spatiotemporal cluster detection, but their comparative performance remains unclear. This study compared spatiotemporal cluster detection methods using simulated and real dengue surveillance data from Thailand. A simulation study explored diverse disease scenarios, characterized by varying magnitudes and spatial-temporal patterns, while real data analysis utilized monthly national dengue surveillance data from 2018 to 2020. Evaluation metrics included accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. Bayesian models and FlexScan emerged as top performers, demonstrating superior accuracy and sensitivity. Traditional methods such as Getis Ord and Moran's I showed poorer performance, while other scanning-based approaches like spatial SaTScan exhibited limitations in positive predictive value and tended to identify large clusters due to the inflexibility of its scanning window shape. Bayesian modeling with a space-time interaction term outperformed testing-based cluster detection methods, emphasizing the importance of incorporating spatiotemporal components. Our study highlights the superior performance of Bayesian models and FlexScan in spatiotemporal cluster detection for dengue surveillance. These findings offer valuable guidance for policymakers and public health authorities in refining disease surveillance strategies and resource allocation. Moreover, the insights gained from this research could be valuable for other diseases sharing similar characteristics and settings, broadening the applicability of our findings beyond dengue surveillance.
登革热在包括泰国在内的热带地区造成了重大的公共卫生负担,泰国的周期性疫情给医疗资源带来了压力。有效的疾病监测对于及时干预和资源分配至关重要。存在多种时空聚类检测方法,但其比较性能仍不明确。本研究使用来自泰国的模拟和实际登革热监测数据比较了时空聚类检测方法。一项模拟研究探索了不同的疾病场景,其特征是幅度和时空模式各不相同,而实际数据分析则利用了2018年至2020年的每月全国登革热监测数据。评估指标包括准确性、敏感性、特异性、阳性预测值和阴性预测值。贝叶斯模型和FlexScan表现出色,显示出更高的准确性和敏感性。Getis Ord和Moran's I等传统方法表现较差,而其他基于扫描的方法如空间SaTScan在阳性预测值方面存在局限性,并且由于其扫描窗口形状的不灵活性往往会识别出大的聚类。带有时空交互项的贝叶斯建模优于基于检验的聚类检测方法,强调了纳入时空成分的重要性。我们的研究突出了贝叶斯模型和FlexScan在登革热监测的时空聚类检测中的卓越性能。这些发现为政策制定者和公共卫生当局完善疾病监测策略和资源分配提供了有价值的指导。此外,从本研究中获得的见解对于其他具有相似特征和背景的疾病可能具有价值,从而扩大了我们的研究结果在登革热监测之外的适用性。