Suppr超能文献

使用贝叶斯时空分层模型对2000年至2019年自杀流行病学和风险因素关联进行全球时空分析。

Global spatiotemporal analysis of suicide epidemiology and risk factor associations from 2000 to 2019 using Bayesian space time hierarchical modeling.

作者信息

Rotejanaprasert Chawarat, Thanutchapat Papin, Phoncharoenwirot Chiraphat, Mekchaiporn Ornrakorn, Chienwichai Peerut, Maude Richard J

机构信息

Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

出版信息

Sci Rep. 2025 Apr 14;15(1):12785. doi: 10.1038/s41598-025-97064-6.

Abstract

Suicide is a significant global public health issue, with marked disparities in rates between countries. Much of the existing research has concentrated on high-income nations, creating a gap in the understanding of global suicide epidemiology. This study aims to address this gap through a comprehensive spatiotemporal analysis of global suicide trends from 2000 to 2019. Data were collected from the Global Health Observatory, encompassing 183 countries across five regions. Bayesian spatiotemporal modeling and cluster detection techniques were employed to assess variations in suicide rates and identify high-risk clusters, alongside examining associations with various risk factors. The findings indicate diverse global and regional age-standardized suicide trends, with overall rates decreasing from an average of 12.97 deaths per 100,000 population in 2000 to 9.93 deaths per 100,000 in 2019. Significant regional variations were noted, particularly in Europe, Asia, and Africa, where high-risk clusters were identified. Additionally, age and sex-specific trends revealed consistently higher rates among males, although these rates have been declining over time. Spatial maps illustrated hotspots of elevated suicide rates, which can inform targeted intervention strategies. Risk factor analysis further revealed associations with socioeconomic and health indicators. The results underscore the necessity for tailored prevention strategies and highlight the importance of international collaboration and surveillance systems in addressing the complexities of global suicide epidemiology. This study contributes valuable insights into suicide patterns and offers implications for mental health policies worldwide.

摘要

自杀是一个重大的全球公共卫生问题,各国之间的自杀率存在显著差异。现有的大部分研究都集中在高收入国家,这导致在全球自杀流行病学的理解上存在差距。本研究旨在通过对2000年至2019年全球自杀趋势进行全面的时空分析来填补这一差距。数据收集自全球卫生观测站,涵盖五个地区的183个国家。采用贝叶斯时空建模和聚类检测技术来评估自杀率的变化并识别高风险聚类,同时研究与各种风险因素的关联。研究结果表明全球和区域年龄标准化自杀趋势各不相同,总体自杀率从2000年每10万人中平均12.97例死亡降至2019年的每10万人中9.93例死亡。注意到存在显著的区域差异,特别是在欧洲、亚洲和非洲,这些地区识别出了高风险聚类。此外,按年龄和性别划分的趋势显示男性自杀率一直较高,不过这些比率随着时间推移一直在下降。空间地图展示了自杀率升高的热点地区,这可为有针对性的干预策略提供依据。风险因素分析进一步揭示了与社会经济和健康指标的关联。结果强调了制定针对性预防策略的必要性,并突出了国际合作和监测系统在应对全球自杀流行病学复杂性方面的重要性。本研究为自杀模式提供了有价值的见解,并对全球心理健康政策具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/11997172/bfa9bdfa7429/41598_2025_97064_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验