Wang Zihao, Zhang Zhan, Li Peishan, Cao Qiannan, Fan Peidong, Xia Huan, Yang Xinling
Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830028, China.
Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830028, China.
Sci Rep. 2024 Dec 28;14(1):31167. doi: 10.1038/s41598-024-82470-z.
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease after Alzheimer's disease. Despite numerous studies, specific age-related factors remain unidentified. This study employed a multi-omics approach to investigate the link between PD and aging. We integrated blood gene expression profiles, expression quantitative trait loci, genome-wide association studies, predictive models, and conducted clinical validation.By analyzing PD datasets, a total of 953 differentially expressed genes (DEGs) and 10 intersecting aging differentially expressed genes (ADEGs) were identified. Enrichment analysis revealed that the regulatory pathways of these ADEGs involve the classical Wnt signaling pathway, endoplasmic reticulum stress, and neuronal apoptosis. Mendelian randomization (MR) analysis showed that the MAP3K5 gene significantly reduces the risk of PD. Multivariate regression analysis identified MXD1, CREB1, and SIRT3 as key diagnostic genes and constructed a predictive model to aid clinical decision-making. Enzyme-linked immunosorbent assay experiments validated the expression levels of these genes in the serum of PD patients.This study utilized a multi-omics approach to identify key ADEGs and their regulatory mechanisms in PD, leading to the establishment of a diagnostic model. The resource is accessible at this link: https://yunhaihupo.shinyapps.io/DynNomapp . This web application can be used as a standalone resource to explore changes in blood transcription profiles in PD and their relationship to clinical and aging aspects, generating new research hypotheses.
帕金森病(PD)是仅次于阿尔茨海默病的第二常见的与年龄相关的神经退行性疾病。尽管进行了大量研究,但具体的年龄相关因素仍未明确。本研究采用多组学方法来探究PD与衰老之间的联系。我们整合了血液基因表达谱、表达数量性状位点、全基因组关联研究、预测模型,并进行了临床验证。通过分析PD数据集,共鉴定出953个差异表达基因(DEG)和10个交叉的衰老差异表达基因(ADEG)。富集分析表明,这些ADEG的调控途径涉及经典的Wnt信号通路、内质网应激和神经元凋亡。孟德尔随机化(MR)分析表明,MAP3K5基因显著降低了患PD的风险。多变量回归分析确定MXD1、CREB1和SIRT3为关键诊断基因,并构建了一个预测模型以辅助临床决策。酶联免疫吸附测定实验验证了这些基因在PD患者血清中的表达水平。本研究利用多组学方法确定了PD中关键的ADEG及其调控机制,从而建立了一个诊断模型。该资源可通过此链接获取:https://yunhaihupo.shinyapps.io/DynNomapp 。这个网络应用程序可以作为一个独立的资源,用于探索PD患者血液转录谱的变化及其与临床和衰老方面的关系,从而产生新的研究假设。