Shi Shuqi, Liu Boyang, Ren Long, Liu Yu
Hunan Provincial Key Laboratory of Grids Operation and Control on Multi-Power Sources Area, Shaoyang University, Shaoyang, 422000, China.
Hunan Engineering Technology Research Center of Special equipment electric energy conversion and control, Shaoyang University, Shaoyang, 422000, China.
Sci Rep. 2024 Dec 28;14(1):30999. doi: 10.1038/s41598-024-82155-7.
Accurately predicting solar power to ensure the economical operation of microgrids and smart grids is a key challenge for integrating the large scale photovoltaic (PV) generation into conventional power systems. This paper proposes an accurate short-term solar power forecasting method using a hybrid machine learning algorithm, with the system trained using the pre-trained extreme learning machine (P-ELM) algorithm. The proposed method utilizes temperature, irradiance, and solar power output at instant i as input parameters, while the output parameters are temperature, irradiance, and solar power output at instant i+1, enabling next-day solar power output forecasting. The performance of the P-ELM algorithm is evaluated using mean absolute error (MAE) and root mean square error (RMSE), and it is compared with the extreme learning machine (ELM) algorithm. The results indicate that the P-ELM algorithm achieves higher accuracy in short-term prediction, demonstrating its suitability for ensuring accuracy and reliability in real-time solar power forecasting.
准确预测太阳能发电量以确保微电网和智能电网的经济运行是将大规模光伏发电集成到传统电力系统中的一项关键挑战。本文提出了一种使用混合机器学习算法的精确短期太阳能发电量预测方法,该系统采用预训练极限学习机(P-ELM)算法进行训练。所提出的方法利用时刻i的温度、辐照度和太阳能输出功率作为输入参数,而输出参数是时刻i+1的温度、辐照度和太阳能输出功率,从而实现次日太阳能输出功率预测。使用平均绝对误差(MAE)和均方根误差(RMSE)评估P-ELM算法的性能,并将其与极限学习机(ELM)算法进行比较。结果表明,P-ELM算法在短期预测中实现了更高的准确性,证明了其适用于确保实时太阳能发电量预测的准确性和可靠性。