Suppr超能文献

基于主动形状模型的半自动分割算法在大腿肌肉和脂肪组织横截面积分析中的验证

Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.

作者信息

Kemnitz Jana, Eckstein Felix, Culvenor Adam G, Ruhdorfer Anja, Dannhauer Torben, Ring-Dimitriou Susanne, Sänger Alexandra M, Wirth Wolfgang

机构信息

Institute of Anatomy, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg and Nuremberg, Austria.

Chondrometrics GmbH, Ainring, Germany.

出版信息

MAGMA. 2017 Oct;30(5):489-503. doi: 10.1007/s10334-017-0622-3. Epub 2017 Apr 28.

Abstract

OBJECTIVE

To validate a semi-automated method for thigh muscle and adipose tissue cross-sectional area (CSA) segmentation from MRI.

MATERIALS AND METHODS

An active shape model (ASM) was trained using 113 MRI CSAs from the Osteoarthritis Initiative (OAI) and combined with an active contour model and thresholding-based post-processing steps. This method was applied to 20 other MRIs from the OAI and to baseline and follow-up MRIs from a 12-week lower-limb strengthening or endurance training intervention (n = 35 females). The agreement of semi-automated vs. previous manual segmentation was assessed using the Dice similarity coefficient and Bland-Altman analyses. Longitudinal changes observed in the training intervention were compared between semi-automated and manual segmentations.

RESULTS

High agreement was observed between manual and semi-automated segmentations for subcutaneous fat, quadriceps and hamstring CSAs. With strength training, both the semi-automated and manual segmentation method detected a significant reduction in adipose tissue CSA and a significant gain in quadriceps, hamstring and adductor CSAs. With endurance training, a significant reduction in adipose tissue CSAs was observed with both methods.

CONCLUSION

The semi-automated approach showed high agreement with manual segmentation of thigh muscle and adipose tissue CSAs and showed longitudinal training effects similar to that observed using manual segmentation.

摘要

目的

验证一种用于从磁共振成像(MRI)中分割大腿肌肉和脂肪组织横截面积(CSA)的半自动方法。

材料与方法

使用来自骨关节炎倡议组织(OAI)的113个MRI CSA训练主动形状模型(ASM),并将其与主动轮廓模型和基于阈值的后处理步骤相结合。该方法应用于来自OAI的另外20个MRI以及一项为期12周的下肢强化或耐力训练干预(n = 35名女性)的基线和随访MRI。使用Dice相似系数和Bland-Altman分析评估半自动分割与先前手动分割的一致性。比较半自动分割和手动分割在训练干预中观察到的纵向变化。

结果

在皮下脂肪、股四头肌和腘绳肌CSA的手动分割与半自动分割之间观察到高度一致性。通过力量训练,半自动和手动分割方法均检测到脂肪组织CSA显著减少,股四头肌、腘绳肌和内收肌CSA显著增加。通过耐力训练,两种方法均观察到脂肪组织CSA显著减少。

结论

半自动方法与大腿肌肉和脂肪组织CSA的手动分割显示出高度一致性,并且显示出与使用手动分割观察到的相似的纵向训练效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd9a/5608793/6b345551364e/10334_2017_622_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验