Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA.
Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Magn Reson Med. 2023 Jun;89(6):2441-2455. doi: 10.1002/mrm.29599. Epub 2023 Feb 6.
Fast and accurate thigh muscle segmentation from MRI is important for quantitative assessment of thigh muscle morphology and composition. A novel deep learning (DL) based thigh muscle and surrounding tissues segmentation model was developed for fully automatic and reproducible cross-sectional area (CSA) and fat fraction (FF) quantification and tested in patients at 10 years after anterior cruciate ligament reconstructions.
A DL model combining UNet and DenseNet was trained and tested using manually segmented thighs from 16 patients (32 legs). Segmentation accuracy was evaluated using Dice similarity coefficients (DSC) and average symmetric surface distance (ASSD). A UNet model was trained for comparison. These segmentations were used to obtain CSA and FF quantification. Reproducibility of CSA and FF quantification was tested with scan and rescan of six healthy subjects.
The proposed UNet and DenseNet had high agreement with manual segmentation (DSC >0.97, ASSD < 0.24) and improved performance compared with UNet. For hamstrings of the operated knee, the automated pipeline had largest absolute difference of 6.01% for CSA and 0.47% for FF as compared to manual segmentation. In reproducibility analysis, the average difference (absolute) in CSA quantification between scan and rescan was better for the automatic method as compared with manual segmentation (2.27% vs. 3.34%), whereas the average difference (absolute) in FF quantification were similar.
The proposed method exhibits excellent accuracy and reproducibility in CSA and FF quantification compared with manual segmentation and can be used in large-scale patient studies.
从 MRI 中快速准确地分割大腿肌肉对于定量评估大腿肌肉形态和成分非常重要。本研究开发了一种新的基于深度学习(DL)的大腿肌肉和周围组织分割模型,用于全自动和可重复的横截面积(CSA)和脂肪分数(FF)定量,并在 ACL 重建后 10 年的患者中进行了测试。
使用来自 16 名患者(32 条腿)的手动分割大腿训练和测试了一种结合 UNet 和 DenseNet 的 DL 模型。使用 Dice 相似系数(DSC)和平均对称面距离(ASSD)评估分割准确性。为了进行比较,还训练了一个 UNet 模型。这些分割用于获得 CSA 和 FF 定量。使用 6 名健康受试者的扫描和重扫测试 CSA 和 FF 定量的可重复性。
与手动分割相比,提出的 UNet 和 DenseNet 具有很高的一致性(DSC>0.97,ASSD<0.24),并且性能优于 UNet。对于手术膝关节的腘绳肌,与手动分割相比,自动流水线的 CSA 绝对差异最大为 6.01%,FF 最大绝对差异为 0.47%。在重复性分析中,与手动分割相比,自动方法 CSA 定量的平均差异(绝对值)更好(2.27% vs. 3.34%),而 FF 定量的平均差异(绝对值)相似。
与手动分割相比,该方法在 CSA 和 FF 定量方面具有出色的准确性和可重复性,可用于大规模患者研究。