Suppr超能文献

一种借鉴历史研究的贝叶斯混合设计。

A Bayesian Hybrid Design With Borrowing From Historical Study.

作者信息

Lu Zhaohua, Toso John, Ayele Girma, He Philip

机构信息

Biostatistics, Daiichi Sankyo Inc, Basking Ridge, USA.

Clinical Development, Daiichi Sankyo Inc, Basking Ridge, USA.

出版信息

Pharm Stat. 2025 Mar-Apr;24(2):e2466. doi: 10.1002/pst.2466. Epub 2024 Dec 27.

Abstract

In early phase drug development of combination therapy, the primary objective is to preliminarily assess whether there is additive activity from a novel agent when combined with an established monotherapy. Due to potential feasibility issues for conducting a large randomized study, uncontrolled single-arm trials have been the mainstream approach in cancer clinical trials. However, such trials often present significant challenges in deciding whether to proceed to the next phase of development due to the lack of randomization in traditional two-arm trials. A hybrid design, leveraging data from a completed historical clinical study of the monotherapy, offers a valuable option to enhance study efficiency and improve informed decision-making. Compared to traditional single-arm designs, the hybrid design may significantly enhance power by borrowing external information, enabling a more robust assessment of activity. The primary challenge of hybrid design lies in handling information borrowing. We introduce a Bayesian dynamic power prior (DPP) framework with three components of controlling amount of dynamic borrowing. The framework offers flexible study design options with explicit interpretation of borrowing, allowing customization according to specific needs. Furthermore, the posterior distribution in the proposed framework has a closed form, offering significant advantages in computational efficiency. The proposed framework's utility is demonstrated through simulations and a case study.

摘要

在联合疗法的早期药物开发中,主要目标是初步评估一种新型药物与已确立的单一疗法联合使用时是否具有相加活性。由于开展大型随机研究存在潜在的可行性问题,非对照单臂试验一直是癌症临床试验中的主流方法。然而,由于传统双臂试验缺乏随机化,此类试验在决定是否进入下一阶段开发时往往面临重大挑战。一种利用单一疗法已完成的历史临床研究数据的混合设计,为提高研究效率和改善决策提供了一个有价值的选择。与传统单臂设计相比,混合设计可以通过借鉴外部信息显著提高检验效能,从而对活性进行更有力的评估。混合设计的主要挑战在于处理信息借鉴问题。我们引入了一个贝叶斯动态效能先验(DPP)框架,该框架有三个控制动态借鉴量的组成部分。该框架提供了灵活的研究设计选项,并对借鉴进行了明确解释,允许根据具体需求进行定制。此外,所提出框架中的后验分布具有封闭形式,在计算效率方面具有显著优势。通过模拟和案例研究证明了所提出框架的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验