Bouriga Rym, Bailleux Caroline, Gal Jocelyn, Chamorey Emmanuel, Mograbi Baharia, Hannoun-Levi Jean-Michel, Milano Gerard
Department of Medical Oncology, Antoine Lacassagne Center, University Côte d'Azur, 33 Avenue de Valombrose, 06189 Nice, France.
Department of Epidemiology and Biostatistics, Antoine Lacassagne Center, University Côte d'Azur, 33 Avenue de Valombrose, 06189 Nice, France.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf237.
The emergence of digital twins (DTs) in the arena of anticancer treatment echoes the transformative impact of artificial intelligence in drug development. DTs provide dynamic, accessible platforms that may accurately replicate patient and tumor characteristics. The potential of DTs in clinical investigation is particularly compelling. By comparing data from virtual trials with conventional trial results, medical teams can significantly enhance the reliability of their studies. Moreover, a significant breakthrough in clinical research is the ability of DT to augment patient data during ongoing trials, enabling adaptive trial designs and more robust statistical analyses to be performed even with limited patient populations. The development of DTs faces however several technical and methodological challenges. These include their tendency to produce unreliable predictions, non-factual information, reasoning errors, systematic biases, and a lack of interpretability. Future research in this field should focus on an interdisciplinary approach that brings together experts from diverse fields, including mathematicians, biologists, and physicians. This collaborative strategy promises to unlock new frontiers in personalized cancer treatment and medical methodologies.
数字孪生(DTs)在抗癌治疗领域的出现,呼应了人工智能在药物研发中的变革性影响。数字孪生提供了动态、可访问的平台,可以准确复制患者和肿瘤特征。数字孪生在临床研究中的潜力尤为引人注目。通过将虚拟试验的数据与传统试验结果进行比较,医疗团队可以显著提高研究的可靠性。此外,临床研究中的一项重大突破是数字孪生能够在正在进行的试验中增加患者数据,即使在患者群体有限的情况下,也能够进行适应性试验设计和更强大的统计分析。然而,数字孪生的发展面临着一些技术和方法上的挑战。这些挑战包括它们倾向于产生不可靠的预测、不实信息、推理错误、系统偏差以及缺乏可解释性。该领域未来的研究应侧重于跨学科方法,汇集包括数学家、生物学家和医生在内的不同领域的专家。这种协作策略有望在个性化癌症治疗和医学方法上开辟新的前沿领域。