Wang Yilin, Zhao Zixia, Wang Yuefan, Liu Zhifang, Chen Leyao, Qi Jin, Xie Yixi, Zhao Pengcheng, Fei Junjie
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China.
Mikrochim Acta. 2024 Dec 28;192(1):40. doi: 10.1007/s00604-024-06901-4.
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs). The electrochemically superior GPC-350/MoS-CNTs nanocomposite was then achieved by combining GPC-350 with MoS-CNTs. The polypyrrole encapsulation serves to protect the ultrafine Co-MOF, preventing its degradation during the calcination process. The linear detection range of the GPC-350/MoS-CNTs/GCE sensor for the determination of catechin (CA) in phosphate buffered saline (PBS) was from 5.0 to 1800.0 nM with a limit of detection of 1.78 nM. In addition, the materials were characterized using SEM, EDX, TEM, XRD, EIS, XPS, FTIR, and Raman. These results indicate that the synthesis of GPC-350/MoS-CNTs nanocomposites is successful and CA in beverages samples can be effectively detected using electrochemical sensors. Additionally, the reaction mechanism of CA was explored through cyclic voltammetry. The application of GPC-350/MoS-CNTs nanocomposites in sensor technology offers innovative approaches for the ultrasensitive detection of flavonoids.
通过在氧化石墨烯(GO)上原位生长超细钴基金属有机框架(Co-MOF),随后用聚吡咯(PPy)进行封装并在350.0℃下煅烧,合成了GO/Co-MOF/PPy-350(GPC-350)。同时,通过在多壁碳纳米管(MWCNTs)内原位合成MoS制备了MoS-MWCNTs(MoS-CNTs)。然后将GPC-350与MoS-CNTs结合,得到电化学性能优异的GPC-350/MoS-CNTs纳米复合材料。聚吡咯封装用于保护超细钴基金属有机框架,防止其在煅烧过程中降解。GPC-350/MoS-CNTs/GCE传感器用于测定磷酸盐缓冲盐水(PBS)中儿茶素(CA)的线性检测范围为5.0至1800.0 nM,检测限为1.78 nM。此外,使用扫描电子显微镜(SEM)、能量散射X射线谱(EDX)、透射电子显微镜(TEM)、X射线衍射(XRD)、电化学阻抗谱(EIS)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和拉曼光谱对材料进行了表征。这些结果表明GPC-350/MoS-CNTs纳米复合材料的合成是成功的,并且可以使用电化学传感器有效地检测饮料样品中的CA。此外,通过循环伏安法探索了CA的反应机理。GPC-350/MoS-CNTs纳米复合材料在传感器技术中的应用为黄酮类化合物的超灵敏检测提供了创新方法。