Fasogbon Ilemobayo Victor, Ondari Erick Nyakundi, Tusubira Deusdedit, Rangasamy Loganathan, Venkatesan Janarthanan, Musyoka Angela Mumbua, Aja Patrick Maduabuchi
Department of Biochemistry, Kampala International University-Western Campus, Ishaka, Uganda; Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, India.
Department of Biological Sciences, School of Pure & Applied Sciences, Kisii University, Kisii, Kenya.
Anal Biochem. 2025 Apr;699:115756. doi: 10.1016/j.ab.2024.115756. Epub 2024 Dec 26.
Aptamers, single-stranded nucleic acids that bind to specific targets with high affinity and specificity, hold significant promise in various biomedical and biotechnological applications. The traditional method of aptamer selection, SELEX (Systematic Evolution of Ligands by EXponential Enrichment) takes a lot of work and time. Recent advancements in computational methods have revolutionized aptamer design, offering efficient and effective alternatives. This review examines recent advances in non-SELEX and de novo aptamer design methods, such as Making Aptamers without SELEX (MAWS), AptaLoop, AptaDiff, RNAGEN, RaptGen, Apta-MCTS, UltraSelex, and Torkamanian-Afshar model. These computer methods utilize bioinformatics, machine learning, and molecular modeling to generate high-affinity aptamers, eliminating the need for multiple selection steps in vitro or in vivo. We provide a comprehensive analysis of each method's performance, including binding affinity, specificity, and stability, and discuss their practical applications in diagnostics, therapeutics, and environmental monitoring. Furthermore, we highlight the strengths and limitations of computational methods against the traditional one. The potential challenges, future directions, and emerging.technologies were also presented. This review underscores the transformative impact of computational aptamer design on research and industry, paving the way for rapid and cost-effective development of aptamer-based technologies.
适体是能以高亲和力和特异性结合特定靶标的单链核酸,在各种生物医学和生物技术应用中具有巨大潜力。传统的适体筛选方法——指数富集配体系统进化技术(SELEX)需要大量的工作和时间。计算方法的最新进展彻底改变了适体设计,提供了高效且有效的替代方案。本文综述了非SELEX和从头设计适体方法的最新进展,如无SELEX制备适体(MAWS)、AptaLoop、AptaDiff、RNAGEN、RaptGen、Apta-MCTS、UltraSelex和托尔卡马尼亚-阿夫沙尔模型。这些计算机方法利用生物信息学、机器学习和分子建模来生成高亲和力适体,无需在体外或体内进行多个筛选步骤。我们对每种方法的性能进行了全面分析,包括结合亲和力、特异性和稳定性,并讨论了它们在诊断、治疗和环境监测中的实际应用。此外,我们强调了计算方法相对于传统方法的优势和局限性。还介绍了潜在挑战、未来方向和新兴技术。本文综述强调了计算适体设计对研究和产业的变革性影响,为基于适体的技术的快速和经济高效发展铺平了道路。