Fasogbon Ilemobayo Victor, Ondari Erick Nyakundi, Tusubira Deusdedit, Kabuuka Tonny, Abubakar Ibrahim Babangida, Makena Wusa, Musyoka Angela Mumbua, Aja Patrick Maduabuchi
Department of Biochemistry, Kampala International University-Western Campus, Ishaka, 41201, Uganda.
Department of Biological Sciences, School of Pure & Applied Sciences, Kisii University, Kisii, 40200, Kenya.
Biol Methods Protoc. 2025 Jun 5;10(1):bpaf046. doi: 10.1093/biomethods/bpaf046. eCollection 2025.
Point-of-care (POC) diagnostics have revolutionized disease detection by enabling rapid, on-site testing without the need for centralized laboratory infrastructure. This review presents recent advances in aptamer-functionalized nanoparticles (AFNs) as promising tools for enhancing POC diagnostics, particularly in infectious diseases and cancer. Aptamers, with their high specificity, stability, and modifiability, offer significant advantages over antibodies, while nanoparticles contribute multifunctionality, including signal amplification and targeting capabilities. AFNs have demonstrated up to a 2-10 times increase in detection sensitivity and significant reductions in diagnostic timeframes. We discuss various nanoparticle types, conjugation strategies, real-world applications, and highlight innovative developments such as AI-assisted aptamer design, wearable diagnostic devices, and green nanoparticle synthesis. Challenges related to stability, manufacturing scalability, regulatory hurdles, and clinical translation are critically examined. By merging aptamer precision with nanoparticle versatility, AFNs hold transformative potential to deliver rapid, affordable, and decentralized healthcare solutions, especially in resource-limited settings. Future interdisciplinary research and sustainable practices will be pivotal in translating AFN-based diagnostics from promising prototypes to global healthcare standards.
即时检测(POC)诊断技术通过实现无需集中实验室基础设施的快速现场检测,彻底改变了疾病检测方式。本综述介绍了适体功能化纳米颗粒(AFNs)作为增强POC诊断的有前途工具的最新进展,特别是在传染病和癌症方面。适体具有高特异性、稳定性和可修饰性,与抗体相比具有显著优势,而纳米颗粒则具有多功能性,包括信号放大和靶向能力。AFNs已证明检测灵敏度提高了2至10倍,并显著缩短了诊断时间。我们讨论了各种纳米颗粒类型、偶联策略、实际应用,并强调了创新发展,如人工智能辅助适体设计、可穿戴诊断设备和绿色纳米颗粒合成。对与稳定性、制造可扩展性、监管障碍和临床转化相关的挑战进行了严格审查。通过将适体的精确性与纳米颗粒的多功能性相结合,AFNs具有变革潜力,可提供快速、经济且分散的医疗保健解决方案,特别是在资源有限的环境中。未来的跨学科研究和可持续实践对于将基于AFN的诊断从有前途的原型转化为全球医疗保健标准至关重要。