Hung Caroline, Diamond Charles, Sinclair Ryan, Lee Meng-Chen, Stenstrom Michael, Freilich Mara A, Montgomery Quinn, Marquez Consuelo, Lyons Timothy W
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA.
Sci Rep. 2024 Dec 28;14(1):31247. doi: 10.1038/s41598-024-82633-y.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States. Combined with high evaporation rates, reduced inflows have led to rapid lake shrinkage, with current maximum depths of only 10 m. Here we report distinct temporal and spatial patterns for nutrient dynamics at the SS for two decades spanning the period before and after major water transfer agreement. While external nutrient loading remains relatively consistent year-round, internal cycling varies seasonally. Winter exhibits high total phosphates and nitrate levels due to reduced primary productivity, with lower ammonium concentrations from increased oxygenation. Summer conditions shift to decreased phosphate and nitrate levels from enhanced primary production, sustained partly by internal phosphorus release from sediments during anoxic periods. Although N:P molar ratios can exceed 50:1 to 100:1 (far above the Redfield ratio of 16:1), phosphorus consistently remains at hypereutrophic levels (> 0.05 mg/L) challenging previous assumptions of phosphorus limitation. Post-2020 data show disrupted stratification patterns. Despite higher oxygen levels in bottom waters compared to 2004-2009, overall water column oxygenation has declined, reflecting altered hydrodynamics in the shallowing lake. These changes have intensified environmental challenges stemming from cultural eutrophication including harmful algal blooms, threatening both ecosystem and public health. Effective remediation will require significant reduction in external nutrient loading through constructed wetlands and/or treatment facilities at tributary mouths to reduce the lake's overall nutrient inventory over time.
索尔顿海(SS)是加利福尼亚最大的内陆湖,面积达816平方公里,它于1905年因一处堤坝决口而形成,该区域历史上曾是卡胡伊拉湖,以自然的干湿循环为特征。尽管一个多世纪以来农业排水未经处理就流入湖中,但对于这个标志性水体的营养物质负荷、循环及相关生态影响,尚未进行过系统评估。该湖目前正经历前所未有的退化,尤其是在2003年《量化结算协议》之后,这是美国最大规模的农业用水向城市用水的转移。再加上高蒸发率,入流减少导致湖泊迅速萎缩,目前最大深度仅为10米。在此,我们报告了在重大调水协议前后的二十年里,索尔顿海营养物质动态的明显时空模式。虽然外部营养物质负荷全年相对稳定,但内部循环存在季节性变化。冬季由于初级生产力降低,总磷酸盐和硝酸盐水平较高,而由于氧化作用增强,铵浓度较低。夏季情况则转变为,由于初级生产增强,磷酸盐和硝酸盐水平降低,部分是由缺氧期沉积物中磷的内部释放维持的。尽管氮磷摩尔比可能超过50:1至100:1(远高于16:1的雷德菲尔德比值),但磷一直处于超富营养水平(>0.05毫克/升),这对先前关于磷限制的假设提出了挑战。2020年后的数据显示分层模式受到干扰。尽管与2004 - 2009年相比,底层水体中的氧气水平较高,但整个水柱中的氧化作用有所下降,这反映了变浅湖泊中流体动力学的改变。这些变化加剧了文化富营养化带来的环境挑战,包括有害藻华,对生态系统和公众健康都构成了威胁。有效的修复措施需要通过在支流河口建造湿地和 / 或处理设施,大幅减少外部营养物质负荷,以逐步减少湖泊的整体营养存量。