Suppr超能文献

基于灰度超声图像的深度学习影像组学有助于诊断BI-RADS 4类病变的良恶性。

Deep learning radiomics on grayscale ultrasound images assists in diagnosing benign and malignant of BI-RADS 4 lesions.

作者信息

Yang Liu, Zhang Naiwen, Jia Junying, Ma Zhe

机构信息

Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.

出版信息

Sci Rep. 2024 Dec 28;14(1):31479. doi: 10.1038/s41598-024-83347-x.

Abstract

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.We created a model called CLDLR that utilizes clinical parameters and DLR to diagnose both BBL and MBL through grayscale ultrasound images. In order to assess the practicality of the CLDLR model, two rounds of evaluations were conducted by radiologists. The CLDLR model demonstrates the highest diagnostic performance in predicting benign and malignant BI-RADS 4 lesions, with areas under the receiver operating characteristic curve (AUC) of 0.988 (95% confidence interval : 0.949, 0.985) in the training cohort and 0.888 (95% confidence interval : 0.829, 0.947) in the testing cohort.The CLDLR model outperformed the diagnoses made by the three radiologists in the initial assessment of the testing cohorts. By utilizing AI scores from the CLDLR model and heatmaps from the DLR model, the diagnostic performance of all radiologists was further enhanced in the testing cohorts. Our study presents a noninvasive imaging biomarker for the prediction of benign and malignant BI-RADS 4 lesions. By comparing the results from two rounds of assessment, our AI-assisted diagnostic tool demonstrates practical value for radiologists with varying levels of experience.

摘要

本研究旨在探索一种基于灰度超声图像的深度学习放射组学(DLR)模型,以协助放射科医生区分乳腺良性病变(BBL)和恶性病变(MBL)。共纳入382例乳腺病变患者,其中包括183例良性病变和199例恶性病变,这些病变均通过临床病理或活检收集并确诊。将入选患者随机分为两组:训练队列和独立测试队列,比例保持为7:3。我们创建了一个名为CLDLR的模型,该模型利用临床参数和DLR通过灰度超声图像诊断BBL和MBL。为了评估CLDLR模型的实用性,放射科医生进行了两轮评估。CLDLR模型在预测良性和恶性BI-RADS 4类病变方面表现出最高的诊断性能,在训练队列中受试者操作特征曲线(AUC)下面积为0.988(95%置信区间:0.949,0.985),在测试队列中为0.888(95%置信区间:0.829,0.947)。在测试队列的初始评估中,CLDLR模型的诊断表现优于三位放射科医生。通过利用CLDLR模型的AI评分和DLR模型的热图,在测试队列中所有放射科医生的诊断性能进一步提高。我们的研究提出了一种用于预测良性和恶性BI-RADS 4类病变的非侵入性成像生物标志物。通过比较两轮评估的结果,我们的人工智能辅助诊断工具对不同经验水平的放射科医生具有实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc59/11682229/d10c3c292dcd/41598_2024_83347_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验