Loeb Norman G, Ham Seung-Hee, Allan Richard P, Thorsen Tyler J, Meyssignac Benoit, Kato Seiji, Johnson Gregory C, Lyman John M
NASA Langley Research Center, Hampton, VA 23681-2199 USA.
Analytical Mechanics Associates (AMA), Hampton, VA 23666 USA.
Surv Geophys. 2024;45(6):1757-1783. doi: 10.1007/s10712-024-09838-8. Epub 2024 May 7.
Satellite observations from the Clouds and the Earth's Radiant Energy System show that Earth's energy imbalance has doubled from 0.5 ± 0.2 Wm during the first 10 years of this century to 1.0 ± 0.2 Wm during the past decade. The increase is the result of a 0.9 ± 0.3 Wm increase absorbed solar radiation (ASR) that is partially offset by a 0.4 ± 0.25 Wm increase in outgoing longwave radiation (OLR). Despite marked differences in ASR and OLR trends during the hiatus (2000-2010), transition-to-El Niño (2010-2016) and post-El Niño (2016-2022) periods, trends in net top-of-atmosphere flux (NET) remain within 0.1 Wm per decade of one another, implying a steady acceleration of climate warming. Northern and southern hemisphere trends in NET are consistent to 0.06 ± 0.31 Wm per decade due to a compensation between weak ASR and OLR hemispheric trend differences of opposite sign. We find that large decreases in stratocumulus and middle clouds over the sub-tropics and decreases in low and middle clouds at mid-latitudes are the primary reasons for increasing ASR trends in the northern hemisphere (NH). These changes are especially large over the eastern and northern Pacific Ocean, and coincide with large increases in sea-surface temperature (SST). The decrease in cloud fraction and higher SSTs over the NH sub-tropics lead to a significant increase in OLR from cloud-free regions, which partially compensate for the NH ASR increase. Decreases in middle cloud reflection and a weaker reduction in low-cloud reflection account for the increase in ASR in the southern hemisphere, while OLR changes are weak. Changes in cloud cover in response to SST increases imply a feedback to climate change yet a contribution from radiative forcing or internal variability cannot be ruled out.
来自云与地球辐射能量系统的卫星观测显示,地球的能量失衡已翻倍,从本世纪头10年的0.5±0.2瓦每平方米增至过去十年的1.0±0.2瓦每平方米。这种增加是由于吸收太阳辐射(ASR)增加了0.9±0.3瓦每平方米,而这部分被向外长波辐射(OLR)增加的0.4±0.25瓦每平方米所抵消。尽管在间歇期(2000 - 2010年)、向厄尔尼诺转变期(2010 - 2016年)和厄尔尼诺后期(2016 - 2022年),ASR和OLR趋势存在显著差异,但大气顶层净通量(NET)的趋势每十年彼此仍在0.1瓦每平方米以内,这意味着气候变暖在稳步加速。由于微弱的ASR和OLR半球趋势差异的相反符号之间的补偿,北半球和南半球NET的趋势每十年一致,为0.06±0.31瓦每平方米。我们发现,亚热带上空层积云和中层云的大幅减少以及中纬度地区低云和中层云的减少是北半球(NH)ASR趋势增加的主要原因。这些变化在东太平洋和北太平洋尤其显著,并且与海表面温度(SST)的大幅上升同时出现。NH亚热带上空云量的减少和较高的SST导致无云区域的OLR显著增加,这部分抵消了NH的ASR增加。中层云反射的减少和低云反射减弱的减少导致了南半球ASR的增加,而OLR变化较弱。云量对SST增加的响应变化意味着对气候变化的反馈,但辐射强迫或内部变率的贡献也不能排除。