Mayer Michael, Kato Seiji, Bosilovich Michael, Bechtold Peter, Mayer Johannes, Schröder Marc, Behrangi Ali, Wild Martin, Kobayashi Shinya, Li Zhujun, L'Ecuyer Tristan
Research Department, European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX UK.
Department of Meteorology and Geophysics, University of Vienna, 1090 Vienna, Austria.
Surv Geophys. 2024;45(6):1827-1854. doi: 10.1007/s10712-024-09827-x. Epub 2024 Apr 17.
Accurate diagnosis of regional atmospheric and surface energy budgets is critical for understanding the spatial distribution of heat uptake associated with the Earth's energy imbalance (EEI). This contribution discusses frameworks and methods for consistent evaluation of key quantities of those budgets using observationally constrained data sets. It thereby touches upon assumptions made in data products which have implications for these evaluations. We evaluate 2001-2020 average regional total (TE) and dry static energy (DSE) budgets using satellite-based and reanalysis data. For the first time, a consistent framework is applied to the ensemble of the 5th generation European Reanalysis (ERA5), version 2 of modern-era retrospective analysis for research and applications (MERRA-2), and the Japanese 55-year Reanalysis (JRA55). Uncertainties of the computed budgets are assessed through inter-product spread and evaluation of physical constraints. Furthermore, we use the TE budget to infer fields of net surface energy flux. Results indicate biases < 1 W/m on the global, < 5 W/m on the continental, and ~ 15 W/m on the regional scale. Inferred net surface energy fluxes exhibit reduced large-scale biases compared to surface flux data based on remote sensing and models. We use the DSE budget to infer atmospheric diabatic heating from condensational processes. Comparison to observation-based precipitation data indicates larger uncertainties (10-15 Wm globally) in the DSE budget compared to the TE budget, which is reflected by increased spread in reanalysis-based fields. Continued validation efforts of atmospheric energy budgets are needed to document progress in new and upcoming observational products, and to understand their limitations when performing EEI research.
准确诊断区域大气和地表能量收支对于理解与地球能量失衡(EEI)相关的热量吸收空间分布至关重要。本文讨论了使用受观测约束的数据集对这些收支关键量进行一致评估的框架和方法。因此涉及到数据产品中所作的假设,这些假设对这些评估有影响。我们使用基于卫星和再分析的数据评估了2001 - 2020年平均区域总能量(TE)和干静能量(DSE)收支。首次将一个一致的框架应用于第五代欧洲再分析(ERA5)、研究与应用的现代回顾性分析版本2(MERRA - 2)以及日本55年再分析(JRA55)的集合。通过产品间差异和物理约束评估来评估计算收支的不确定性。此外,我们使用TE收支来推断净地表能量通量场。结果表明,在全球尺度上偏差<1 W/m²,在大陆尺度上<5 W/m²,在区域尺度上约为15 W/m²。与基于遥感和模型的地表通量数据相比,推断出的净地表能量通量表现出减小的大尺度偏差。我们使用DSE收支从凝结过程推断大气非绝热加热。与基于观测的降水数据相比,DSE收支的不确定性更大(全球为10 - 15 W/m²),这在基于再分析的场中表现为差异增大。需要持续对大气能量收支进行验证工作,以记录新的和即将出现的观测产品的进展,并了解在进行EEI研究时它们的局限性。