Peng Mengke, Li Longbin, Wang Li, Tang Xiannong, Xiao Kang, Gao Xuejiao J, Hu Ting, Yuan Kai, Chen Yiwang
College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang 330031, China.
School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
Fundam Res. 2023 Mar 14;4(6):1488-1497. doi: 10.1016/j.fmre.2023.02.018. eCollection 2024 Nov.
Manufacturing cost-effective electrolytes featuring high (electro)chemical stability, high Zn anode reversibility, good ionic conductivity, and environmental benignity is highly desired for rechargeable aqueous zinc-based energy storage devices but remains a great challenge. Herein, a solute-solvent dual engineering strategy using lithium bis(trifluoromethane)sulfonimide (LiTFSI) and inexpensive poly(ethylene glycol) (PEG, = 200) as a coadditive with an optimized ratio accomplished an all-round performance enhancement of electrolytes. Due to the synergistic inhibition of water activity and Zn solvation structure reorganization by LiTFSI-PEG, as well as a stable F-rich interfacial layer and PEG adsorption on the Zn anode surface, dendrite-free Zn plating/stripping at nearly 100% Coulombic efficiency and stable cycling performance over 2000 h at 0.5 mA cm was achieved. Importantly, the integrated Zn-ion hybrid supercapacitors are endowed with a wide voltage window of 0-2.2 V, superb cycling stability up to 10,000 cycles, and excellent temperature adaptability from -40 °C to 50 °C. The highest cutoff voltage reached 2.1 V in Zn//LiMnO and Zn//VOPO full cells with a stable lifespan over 500 cycles. This work provides a promising strategy for the development of aqueous electrolytes with excellent comprehensive properties for zinc-based energy storage.
对于可充电水系锌基储能装置而言,制造具有高(电)化学稳定性、高锌阳极可逆性、良好离子导电性和环境友好性的高性价比电解质是非常有必要的,但这仍然是一个巨大的挑战。在此,一种溶质 - 溶剂双工程策略,使用双(三氟甲烷)磺酰亚胺锂(LiTFSI)和廉价的聚乙二醇(PEG, = 200)作为共添加剂,并采用优化比例,实现了电解质全方位性能的提升。由于LiTFSI - PEG对水活性和锌溶剂化结构重组的协同抑制作用,以及在锌阳极表面形成稳定的富氟界面层和PEG吸附,实现了近100%库仑效率下无枝晶的锌电镀/剥离以及在0.5 mA cm下超过2000小时的稳定循环性能。重要的是,集成的锌离子混合超级电容器具有0 - 2.2 V的宽电压窗口、高达10000次循环的卓越循环稳定性以及从 - 40°C到50°C的优异温度适应性。在Zn//LiMnO和Zn//VOPO全电池中,最高截止电压达到2.1 V,稳定寿命超过500次循环。这项工作为开发具有优异综合性能的水系锌基储能电解质提供了一种有前景的策略。