Henry Teague, Fisher Zachary, Bollen Kenneth
Psychology & Data Science, University of Virginia.
Quantitative Developmental Methodology Systems, The Pennsylvania State University.
Struct Equ Modeling. 2024;31(6):965-982. doi: 10.1080/10705511.2024.2343926. Epub 2024 May 28.
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, non-iterative estimator for latent variable models. Associated with this estimator are equation specific tests of model misspecification. One issue with equation specific tests is that they lack specificity, in that they indicate that some instruments are problematic without revealing which specific ones. Instruments that are poor predictors of their target variables ("weak instruments") is a second potential problem. We propose a novel extension to detect instrument specific tests of misspecification and weak instruments. We term this the Model-Implied Instrumental Variable Two-Stage Bayesian Model Averaging (MIIV-2SBMA) estimator. We evaluate the performance of MIIV-2SBMA against MIIV-2SLS in a simulation study and show that it has comparable performance in terms of parameter estimation. Additionally, our instrument specific overidentification tests developed within the MIIV-2SBMA framework show increased power to detect specific problematic and weak instruments. Finally, we demonstrate MIIV-2SBMA using an empirical example.
模型隐含工具变量两阶段最小二乘法(MIIV - 2SLS)是一种用于潜在变量模型的有限信息、逐个方程的非迭代估计器。与该估计器相关的是模型误设的方程特定检验。方程特定检验的一个问题是它们缺乏特异性,即它们表明某些工具存在问题,但没有揭示具体是哪些工具。其目标变量的预测能力较差的工具(“弱工具”)是第二个潜在问题。我们提出了一种新颖的扩展方法,用于检测工具特定的误设检验和弱工具。我们将此称为模型隐含工具变量两阶段贝叶斯模型平均法(MIIV - 2SBMA)估计器。我们在一项模拟研究中评估了MIIV - 2SBMA相对于MIIV - 2SLS的性能,并表明它在参数估计方面具有可比的性能。此外,我们在MIIV - 2SBMA框架内开发的工具特定过度识别检验显示,其检测特定问题工具和弱工具的能力有所提高。最后,我们通过一个实证例子展示了MIIV - 2SBMA。