Suppr超能文献

一项机器学习辅助的临床前胶质瘤建模系统评价:实践是否与时俱进?

A machine learning-assisted systematic review of preclinical glioma modeling: Is practice changing with the times?

作者信息

Hirst Theodore C, Wilson Emma, Browne Declan, Sena Emily S

机构信息

Department of Neurosurgery, Royal Victoria Hospital, Belfast, UK.

Patrick G Johnson Centre for Cancer Research, Queens University Belfast, Belfast, UK.

出版信息

Neurooncol Adv. 2024 Dec 28;6(1):vdae193. doi: 10.1093/noajnl/vdae193. eCollection 2024 Jan-Dec.

Abstract

BACKGROUND

Despite improvements in our understanding of glioblastoma pathophysiology, there have been no major improvements in treatment in recent years. Animal models are a vital tool for investigating cancer biology and its treatment, but have known limitations. There have been advances in glioblastoma modeling techniques in this century although it is unclear to what extent they have been adopted.

METHODS

We searched Pubmed and EMBASE using terms designed to identify all publications reporting an animal glioma experiment, using a machine learning algorithm to assist with screening. We reviewed the full text of a sample of 1000 articles and then used the findings to inform a screen of all included abstracts to appraise the modeling applications across the entire dataset.

RESULTS

The search identified 26 201 publications of which 13 783 were included at screening. The automated screening had high sensitivity but limited specificity. We observed a dominance of traditional cell line paradigms and the emergence of advanced tumor model systems eclipsed by a large increase in the volume of cell line experiments. Few studies used more than 1 model in vivo and most publications did not verify critical genetic features.

CONCLUSIONS

Advanced models have clear advantages in terms of tumor and disease recapitulation and have largely not replaced traditional cell lines which have a number of critical deficiencies that limit their viability in modern animal research. The judicious use of advanced models or more relevant cell lines might improve the translational relevance of future animal glioblastoma experimentation.

摘要

背景

尽管我们对胶质母细胞瘤病理生理学的理解有所进步,但近年来其治疗方法并无重大改进。动物模型是研究癌症生物学及其治疗的重要工具,但存在已知的局限性。本世纪胶质母细胞瘤建模技术有了进展,不过尚不清楚这些技术的采用程度如何。

方法

我们使用旨在识别所有报告动物胶质瘤实验的出版物的术语在PubMed和EMBASE中进行检索,借助机器学习算法辅助筛选。我们审阅了1000篇文章样本的全文,然后利用这些结果对所有纳入摘要进行筛选,以评估整个数据集中的建模应用情况。

结果

检索到26201篇出版物,其中13783篇在筛选时被纳入。自动筛选具有高灵敏度但特异性有限。我们观察到传统细胞系范式占主导地位,先进肿瘤模型系统的出现因细胞系实验数量大幅增加而黯然失色。很少有研究在体内使用超过一种模型,且大多数出版物未验证关键基因特征。

结论

先进模型在肿瘤和疾病重现方面具有明显优势,但在很大程度上尚未取代传统细胞系,传统细胞系存在一些关键缺陷,限制了它们在现代动物研究中的可行性。明智地使用先进模型或更相关的细胞系可能会提高未来动物胶质母细胞瘤实验的转化相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11680884/6ccea331e27f/vdae193_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验