Suppr超能文献

用于区分高级别和低级别胶质瘤的机器学习模型:系统综述与报告质量分析

Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis.

作者信息

Bahar Ryan C, Merkaj Sara, Cassinelli Petersen Gabriel I, Tillmanns Niklas, Subramanian Harry, Brim Waverly Rose, Zeevi Tal, Staib Lawrence, Kazarian Eve, Lin MingDe, Bousabarah Khaled, Huttner Anita J, Pala Andrej, Payabvash Seyedmehdi, Ivanidze Jana, Cui Jin, Malhotra Ajay, Aboian Mariam S

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States.

Department of Neurosurgery, University of Ulm, Ulm, Germany.

出版信息

Front Oncol. 2022 Apr 22;12:856231. doi: 10.3389/fonc.2022.856231. eCollection 2022.

Abstract

OBJECTIVES

To systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction.

METHODS

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) statement. A systematic search was performed in September 2020, and repeated in January 2021, on four databases: Embase, Medline, CENTRAL, and Web of Science Core Collection. Publications were screened in Covidence, and reporting quality was measured against the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Descriptive statistics were calculated using GraphPad Prism 9.

RESULTS

The search identified 11,727 candidate articles with 1,135 articles undergoing full text review and 85 included in analysis. 67 (79%) articles were published between 2018-2021. The mean prediction accuracy of the best performing model in each study was 0.89 ± 0.09. The most common algorithm for conventional machine learning studies was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and for deep learning studies was Convolutional Neural Network (mean accuracy: 0.91 ± 0.10). Only one study used both a large training dataset (n>200) and external validation (accuracy: 0.72) for their model. The mean adherence rate to TRIPOD was 44.5% ± 11.1%, with poor reporting adherence for model performance (0%), abstracts (0%), and titles (0%).

CONCLUSIONS

The application of ML to glioma grade prediction has grown substantially, with ML model studies reporting high predictive accuracies but lacking essential metrics and characteristics for assessing model performance. Several domains, including generalizability and reproducibility, warrant further attention to enable translation into clinical practice.

SYSTEMATIC REVIEW REGISTRATION

PROSPERO, identifier CRD42020209938.

摘要

目的

系统回顾、评估描述用于胶质瘤分级预测的机器学习(ML)模型的研究报告质量,并探讨改进机会。

方法

本研究遵循诊断试验准确性系统评价与Meta分析的首选报告项目(PRISMA-DTA)声明。于2020年9月进行了系统检索,并于2021年1月在四个数据库(Embase、Medline、CENTRAL和Web of Science核心合集)上重复检索。在Covidence中筛选出版物,并根据个体预后或诊断多变量预测模型的透明报告(TRIPOD)声明来衡量报告质量。使用GraphPad Prism 9计算描述性统计数据。

结果

检索共识别出11727篇候选文章,其中1135篇文章进行了全文审查,85篇纳入分析。67篇(79%)文章发表于2018 - 2021年。每项研究中表现最佳模型的平均预测准确率为0.89±0.09。传统机器学习研究中最常用的算法是支持向量机(平均准确率:0.90±0.07),深度学习研究中最常用的算法是卷积神经网络(平均准确率:0.91±0.10)。只有一项研究为其模型同时使用了大型训练数据集(n>200)和外部验证(准确率:0.72)。对TRIPOD的平均依从率为44.5%±11.1%,在模型性能(0%)、摘要(0%)和标题(0%)方面报告依从性较差。

结论

ML在胶质瘤分级预测中的应用显著增加,ML模型研究报告了较高的预测准确率,但缺乏评估模型性能的关键指标和特征。包括可推广性和可重复性在内的几个领域值得进一步关注,以促进转化为临床实践。

系统评价注册

PROSPERO,标识符CRD42020209938。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a63/9076130/6438eb09a2c7/fonc-12-856231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验