Yin Junqi, Reshniak Viktor, Liu Siyan, Zhang Guannan, Wang Xiaoping, Xiao Zhongcan, Morgan Zachary, Pawledzio Sylwia, Proffen Thomas, Hoffmann Christina, Cao Huibo, Chakoumakos Bryan C, Liu Yaohua
National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Struct Dyn. 2024 Dec 24;11(6):064303. doi: 10.1063/4.0000279. eCollection 2024 Nov.
We introduce a computational framework that integrates artificial intelligence (AI), machine learning, and high-performance computing to enable real-time steering of neutron scattering experiments using an edge-to-exascale workflow. Focusing on time-of-flight neutron event data at the Spallation Neutron Source, our approach combines temporal processing of four-dimensional neutron event data with predictive modeling for multidimensional crystallography. At the core of this workflow is the Temporal Fusion Transformer model, which provides voxel-level precision in predicting 3D neutron scattering patterns. The system incorporates edge computing for rapid data preprocessing and exascale computing via the Frontier supercomputer for large-scale AI model training, enabling adaptive, data-driven decisions during experiments. This framework optimizes neutron beam time, improves experimental accuracy, and lays the foundation for automation in neutron scattering. Although real-time experiment steering is still in the proof-of-concept stage, the demonstrated potential of this system offers a substantial reduction in data processing time from hours to minutes via distributed training, and significant improvements in model accuracy, setting the stage for widespread adoption across neutron scattering facilities and more efficient exploration of complex material systems.
我们引入了一个计算框架,该框架集成了人工智能(AI)、机器学习和高性能计算,以实现使用从边缘到百亿亿次的工作流程对中子散射实验进行实时引导。以散裂中子源处的飞行时间中子事件数据为重点,我们的方法将四维中子事件数据的时间处理与多维晶体学的预测建模相结合。此工作流程的核心是时间融合变压器模型,该模型在预测三维中子散射模式时提供体素级精度。该系统集成了边缘计算以进行快速数据预处理,并通过前沿超级计算机进行百亿亿次计算以进行大规模人工智能模型训练,从而在实验期间实现自适应、数据驱动的决策。该框架优化了中子束时间,提高了实验精度,并为中子散射的自动化奠定了基础。尽管实时实验引导仍处于概念验证阶段,但该系统已展示出的潜力可通过分布式训练将数据处理时间从数小时大幅减少至数分钟,并显著提高模型精度,为在中子散射设施中广泛采用以及更高效地探索复杂材料系统奠定了基础。