Suppr超能文献

SkinSage可解释人工智能:一种用于皮肤病变诊断的可解释深度学习解决方案。

SkinSage XAI: An explainable deep learning solution for skin lesion diagnosis.

作者信息

Munjal Geetika, Bhardwaj Paarth, Bhargava Vaibhav, Singh Shivendra, Nagpal Nimish

机构信息

Amity School of Engineering and Technology Amity University Noida Noida Uttar Pradesh India.

出版信息

Health Care Sci. 2024 Nov 28;3(6):438-455. doi: 10.1002/hcs2.121. eCollection 2024 Dec.

Abstract

BACKGROUND

Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black-box nature of many models limits interpretability, posing challenges for dermatologists.

METHODS

To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization. A data set of around 50,000 images from the Customized HAM10000, selected for diversity, serves as the foundation. The Inception v3 model is used for classification, supported by gradient-weighted class activation mapping and local interpretable model-agnostic explanations algorithms, which provide clear visual explanations for model outputs.

RESULTS

SkinSage XAI demonstrated high performance, accurately categorizing seven types of skin lesions-dermatofibroma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, basal cell carcinoma, and melanoma. It achieved an accuracy of 96%, with precision at 96.42%, recall at 96.28%, score at 96.14%, and an area under the curve of 99.83%.

CONCLUSIONS

SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability. The system provides transparent, accurate diagnoses, improving decision-making for dermatologists and potentially enhancing patient outcomes.

摘要

背景

皮肤癌对全球健康构成重大威胁,早期检测对于成功治疗至关重要。虽然深度学习算法极大地提高了皮肤病变的分类能力,但许多模型的黑箱性质限制了可解释性,给皮肤科医生带来了挑战。

方法

为解决这些局限性,SkinSage XAI利用先进的可解释人工智能(XAI)技术进行皮肤病变分类。一个从定制的HAM10000中选取的约50000张图像的数据集,因其多样性而被选作基础。Inception v3模型用于分类,并由梯度加权类激活映射和局部可解释模型无关解释算法提供支持,这些算法为模型输出提供清晰的视觉解释。

结果

SkinSage XAI表现出高性能,能准确对七种皮肤病变进行分类,即皮肤纤维瘤、良性角化病、黑素细胞痣、血管病变、光化性角化病、基底细胞癌和黑色素瘤。其准确率达到96%,精确率为96.42%,召回率为96.28%,F1分数为96.14%,曲线下面积为99.83%。

结论

SkinSage XAI通过弥合准确性和可解释性方面的差距,代表了皮肤病学和人工智能领域的一项重大进展。该系统提供透明、准确的诊断,改善皮肤科医生的决策,并可能提高患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4570/11671215/642612c2c8f3/HCS2-3-438-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验