Zniber Mohammed, Fatihi Youssef, Huynh Tan-Phat
Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku 20500, Finland.
Department of Computer Science, Ibn Tofail University, Kenitra 14000, Morocco.
Bioinform Adv. 2024 Nov 27;5(1):vbae192. doi: 10.1093/bioadv/vbae192. eCollection 2025.
NMR-based metabolomics is a field driven by technological advancements, necessitating the use of advanced preprocessing tools. Despite this need, there is a remarkable scarcity of comprehensive and user-friendly preprocessing tools in Python. To bridge this gap, we have developed Protomix-a Python package designed for metabolomics research. Protomix offers a set of automated, efficient, and user-friendly signal-preprocessing steps, tailored to streamline and enhance the preprocessing phase in metabolomics studies.
This package presents a comprehensive preprocessing pipeline compatible with various data analysis tools. It encompasses a suite of functionalities for data extraction, preprocessing, and interactive visualization. Additionally, it includes a tutorial in the form of a Python Jupyter notebook, specifically designed for the analysis of 1D H-NMR metabolomics data related to prostate cancer and benign prostatic hyperplasia.
Protomix can be accessed at https://github.com/mzniber/protomix and https://protomix.readthedocs.io/en/latest/index.html.
基于核磁共振的代谢组学是一个由技术进步驱动的领域,需要使用先进的预处理工具。尽管有此需求,但Python中全面且用户友好的预处理工具却极为匮乏。为了填补这一空白,我们开发了Protomix——一个专为代谢组学研究设计的Python软件包。Protomix提供了一套自动化、高效且用户友好的信号预处理步骤,旨在简化和加强代谢组学研究中的预处理阶段。
该软件包提供了一个与各种数据分析工具兼容的全面预处理流程。它包含了一系列用于数据提取、预处理和交互式可视化的功能。此外,它还包括一个以Python Jupyter笔记本形式呈现的教程,专门用于分析与前列腺癌和良性前列腺增生相关的一维氢核磁共振代谢组学数据。
可通过https://github.com/mzniber/protomix和https://protomix.readthedocs.io/en/latest/index.html访问Protomix。