Suppr超能文献

基于深度学习的颞下颌关节盘前移位自动诊断及其临床应用

Deep learning-based automated diagnosis of temporomandibular joint anterior disc displacement and its clinical application.

作者信息

Yu Yue, Wu Shu Jun, Zhu Yao Min

机构信息

Department of Oral & Maxillofacial Surgery, Shenzhen Stomatology Hospital, Affiliated to Shenzhen University, Shenzhen, Guangdong Province, China.

出版信息

Front Physiol. 2024 Dec 13;15:1445258. doi: 10.3389/fphys.2024.1445258. eCollection 2024.

Abstract

INTRODUCTION

This study aimed to develop a deep learning-based method for interpreting magnetic resonance imaging (MRI) scans of temporomandibular joint (TMJ) anterior disc displacement (ADD) and to formulate an automated diagnostic system for clinical practice.

METHODS

The deep learning models were utilized to identify regions of interest (ROI), segment TMJ structures including the articular disc, condyle, glenoid fossa, and articular tubercle, and classify TMJ ADD. The models employed Grad-CAM heatmaps and segmentation annotation diagrams for visual diagnostic predictions and were deployed for clinical application. We constructed four deep-learning models based on the ResNet101_vd framework utilizing an MRI dataset of 618 TMJ cases collected from two hospitals (Hospitals SS and SG) and a dataset of 840 TMJ MRI scans from October 2022 to July 2023. The training and validation datasets included 700 images from Hospital SS, which were used to develop the models. Model performance was assessed using 140 images from Hospital SS (internal validity test) and 140 images from Hospital SG (external validity test). The first model identified the ROI, the second automated the segmentation of anatomical components, and the third and fourth models performed classification tasks based on segmentation and non-segmentation approaches. MRI images were classified into four categories: normal (closed mouth), ADD (closed mouth), normal (open mouth), and ADD (open mouth). Combined findings from open and closed-mouth positions provided conclusive diagnoses. Data augmentation techniques were used to prevent overfitting and enhance model robustness. The models were assessed using performance metrics such as precision, recall, mean average precision (mAP), F1-score, Matthews Correlation Coefficient (MCC), and confusion matrix analysis.

RESULTS

Despite lower performance with Hospital SG's data than Hospital SS's, both achieved satisfactory results. Classification models demonstrated high precision rates above 92%, with the segmentation-based model outperforming the non-segmentation model in overall and category-specific metrics.

DISCUSSION

In summary, our deep learning models exhibited high accuracy in detecting TMJ ADD and provided interpretable, visualized predictive results. These models can be integrated with clinical examinations to enhance diagnostic precision.

摘要

引言

本研究旨在开发一种基于深度学习的方法来解读颞下颌关节(TMJ)前盘移位(ADD)的磁共振成像(MRI)扫描,并制定一个用于临床实践的自动化诊断系统。

方法

利用深度学习模型识别感兴趣区域(ROI),分割包括关节盘、髁突、关节窝和关节结节在内的TMJ结构,并对TMJ ADD进行分类。这些模型采用Grad-CAM热图和分割注释图进行视觉诊断预测,并部署用于临床应用。我们基于ResNet101_vd框架构建了四个深度学习模型,使用了从两家医院(SS医院和SG医院)收集的618例TMJ病例的MRI数据集以及2022年10月至2023年7月的840例TMJ MRI扫描数据集。训练和验证数据集包括来自SS医院的700张图像,用于开发模型。使用来自SS医院的140张图像(内部效度测试)和来自SG医院的140张图像(外部效度测试)评估模型性能。第一个模型识别ROI,第二个模型自动分割解剖成分,第三个和第四个模型基于分割和非分割方法执行分类任务。MRI图像分为四类:正常(闭口)、ADD(闭口)、正常(开口)和ADD(开口)。开口和闭口位置的综合结果提供确定性诊断。使用数据增强技术来防止过拟合并增强模型鲁棒性。使用诸如精度、召回率、平均平均精度(mAP)、F1分数、马修斯相关系数(MCC)和混淆矩阵分析等性能指标评估模型。

结果

尽管SG医院的数据性能低于SS医院的数据,但两者均取得了令人满意的结果。分类模型显示出高于92%的高精度率,基于分割的模型在整体和特定类别指标上优于非分割模型。

讨论

总之,我们的深度学习模型在检测TMJ ADD方面表现出高准确性,并提供了可解释的、可视化的预测结果。这些模型可以与临床检查相结合以提高诊断精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/11671476/8aae8f1dd39d/fphys-15-1445258-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验