Doherty Adam, Buchanan Ian, Roche I Morgó Oriol, Astolfo Alberto, Savvidis Savvas, Gerli Mattia F M, Citro Antonio, Olivo Alessandro, Endrizzi Marco
Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK.
X-ray Microscopy and Tomography Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
Optica. 2024 Nov 25;11(12):1603-1613. doi: 10.1364/OPTICA.525760. eCollection 2024 Dec 20.
X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample. This fuses attenuation and dark-field signals, enabling the reconstruction of a unified three-dimensional volume. Notably, our method can obtain dark-field contrast from a single exposure and employs conventional back projection algorithms for reconstruction. Our approach is based on the assumption of a macroscopically homogeneous material, which we validate through experiments on phantoms and on biological tissue samples. The methodology is implemented on a laboratory-based, rotating anode X-ray tube system without the need for coherent radiation or a high-resolution detector. Utilizing this system with streamlined data acquisition enables expedited scanning while maximizing dose efficiency. These attributes are crucial in time- and dose-sensitive medical imaging applications and unlock the ability of dark-field contrast with high-throughput lab-based tomography. We believe that the proposed approach can be extended across X-ray dark-field imaging implementations beyond tomography, spanning fast radiography, directional dark-field imaging, and compatibility with pulsed X-ray sources.
X射线暗场成像通过被检查体积内亚分辨率特征产生的对比度突出显示样本结构。对暗场信号进行量化通常需要多次曝光以进行相位恢复,分离散射、折射和衰减的贡献。在此,我们介绍一种用于非干涉式X射线暗场成像的方法,该方法呈现样本的单参数表示。这融合了衰减和暗场信号,能够重建统一的三维体积。值得注意的是,我们的方法可以从单次曝光中获得暗场对比度,并采用传统的反投影算法进行重建。我们的方法基于宏观均匀材料的假设,我们通过对体模和生物组织样本的实验对其进行了验证。该方法在基于实验室的旋转阳极X射线管系统上实现,无需相干辐射或高分辨率探测器。利用该系统进行简化的数据采集能够加快扫描速度,同时最大限度地提高剂量效率。这些特性在对时间和剂量敏感的医学成像应用中至关重要,并开启了基于实验室的高通量断层扫描实现暗场对比度的能力。我们相信,所提出的方法可以扩展到断层扫描之外的X射线暗场成像应用中,涵盖快速放射成像、定向暗场成像以及与脉冲X射线源的兼容性。