Palo Gianpaolo, Fiorillo Luigi, Monachino Giuliana, Bechny Michal, Wälti Michel, Meier Elias, Pentimalli Biscaretti di Ruffia Francesca, Melnykowycz Mark, Tzovara Athina, Agostini Valentina, Faraci Francesca Dalia
Department of Innovative Technologies, Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.
Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy.
Sleep Adv. 2024 Nov 29;5(1):zpae087. doi: 10.1093/sleepadvances/zpae087. eCollection 2024.
Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alternatives need to be explored. One promising contender is the in-ear-electroencephalography (EEG) sensor. This study aims to establish a methodology to assess the similarity between the single-channel in-ear-EEG and standard PSG derivations.
The study involves 4-hour signals recorded from 10 healthy subjects aged 18-60 years. Recordings are analyzed following two complementary approaches: (1) a hypnogram-based analysis aimed at assessing the agreement between PSG and in-ear-EEG-derived hypnograms; and (2) a feature- and analysis-based on time- and frequency-domain feature extraction, unsupervised feature selection, and definition of Feature-based Similarity Index via Jensen-Shannon Divergence (JSD-FSI).
We find large variability between PSG and in-ear-EEG hypnograms scored by the same sleep expert according to Cohen's kappa metric, with significantly greater agreements for PSG scorers than for in-ear-EEG scorers ( < .001) based on Fleiss' kappa metric. On average, we demonstrate a high similarity between PSG and in-ear-EEG signals in terms of JSD-FSI-0.79 ± 0.06-awake, 0.77 ± 0.07-nonrapid eye movement, and 0.67 ± 0.10-rapid eye movement-and in line with the similarity values computed independently on standard PSG channel combinations.
In-ear-EEG is a valuable solution for home-based sleep monitoring; however, further studies with a larger and more heterogeneous dataset are needed.
多导睡眠图(PSG)目前是评估睡眠障碍的基准。其带来的不适使得长期监测不可行,从而导致睡眠质量评估存在偏差。因此,需要探索侵入性更小、成本效益更高且便于携带的替代方法。一种有前景的竞争者是入耳式脑电图(EEG)传感器。本研究旨在建立一种方法来评估单通道入耳式EEG与标准PSG导联之间的相似性。
该研究涉及对10名年龄在18 - 60岁的健康受试者进行4小时的信号记录。记录按照两种互补方法进行分析:(1)基于睡眠图的分析,旨在评估PSG和入耳式EEG得出的睡眠图之间的一致性;(2)基于特征及时频域特征提取、无监督特征选择以及通过詹森 - 香农散度(JSD - FSI)定义基于特征的相似性指数的特征与分析。
根据科恩kappa度量,我们发现由同一位睡眠专家对PSG和入耳式EEG睡眠图评分时存在很大差异,基于弗莱斯kappa度量,PSG评分者之间的一致性显著高于入耳式EEG评分者(<0.001)。平均而言,我们证明在JSD - FSI方面,PSG和入耳式EEG信号具有高度相似性——清醒状态下为0.79±0.06,非快速眼动状态下为0.77±0.07,快速眼动状态下为0.67±0.10——并且与在标准PSG通道组合上独立计算的相似性值一致。
入耳式EEG是家庭睡眠监测的一种有价值的解决方案;然而,需要使用更大且更具异质性的数据集进行进一步研究。