Suppr超能文献

多评分睡眠数据库:如何在自动睡眠评分中利用多标签

Multi-scored sleep databases: how to exploit the multiple-labels in automated sleep scoring.

机构信息

Department of Mathematics, Statistics and Computer Science, Institute of Computer Science, University of Bern, Bern, Switzerland.

Department of Innovative Technologies, Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.

出版信息

Sleep. 2023 May 10;46(5). doi: 10.1093/sleep/zsad028.

Abstract

STUDY OBJECTIVES

Inter-scorer variability in scoring polysomnograms is a well-known problem. Most of the existing automated sleep scoring systems are trained using labels annotated by a single-scorer, whose subjective evaluation is transferred to the model. When annotations from two or more scorers are available, the scoring models are usually trained on the scorer consensus. The averaged scorer's subjectivity is transferred into the model, losing information about the internal variability among different scorers. In this study, we aim to insert the multiple-knowledge of the different physicians into the training procedure. The goal is to optimize a model training, exploiting the full information that can be extracted from the consensus of a group of scorers.

METHODS

We train two lightweight deep learning-based models on three different multi-scored databases. We exploit the label smoothing technique together with a soft-consensus (LSSC) distribution to insert the multiple-knowledge in the training procedure of the model. We introduce the averaged cosine similarity metric (ACS) to quantify the similarity between the hypnodensity-graph generated by the models with-LSSC and the hypnodensity-graph generated by the scorer consensus.

RESULTS

The performance of the models improves on all the databases when we train the models with our LSSC. We found an increase in ACS (up to 6.4%) between the hypnodensity-graph generated by the models trained with-LSSC and the hypnodensity-graph generated by the consensus.

CONCLUSION

Our approach definitely enables a model to better adapt to the consensus of the group of scorers. Future work will focus on further investigations on different scoring architectures and hopefully large-scale-heterogeneous multi-scored datasets.

摘要

研究目的

评分者在评分多导睡眠图时的变异性是一个众所周知的问题。大多数现有的自动睡眠评分系统都是使用单个评分者标注的标签进行训练的,其主观评估被转移到模型中。当有两个或更多评分者的注释可用时,评分模型通常是在评分者共识的基础上进行训练的。评分者的平均主观性被转移到模型中,从而丢失了不同评分者之间内部变异性的信息。在这项研究中,我们旨在将多个医生的知识插入到训练过程中。目标是通过利用可以从一组评分者共识中提取的全部信息来优化模型训练。

方法

我们在三个不同的多评分数据库上训练了两个基于深度学习的轻量级模型。我们利用标签平滑技术和软共识(LSSC)分布将多知识插入到模型的训练过程中。我们引入平均余弦相似度度量(ACS)来量化具有-LSSC 的模型生成的睡眠密度图与评分者共识生成的睡眠密度图之间的相似性。

结果

当我们使用 LSSC 训练模型时,模型在所有数据库上的性能都有所提高。我们发现,通过 LSSC 训练的模型生成的睡眠密度图与共识生成的睡眠密度图之间的 ACS 增加了(最高可达 6.4%)。

结论

我们的方法确实使模型能够更好地适应评分者群体的共识。未来的工作将集中在不同评分架构的进一步研究上,并希望在大规模异构多评分数据集上进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9956/10171642/7b5695085982/zsad028_fig5.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验