Suppr超能文献

基于不同视觉刺激材料引导的跨主体运动想象的运动认知解码

Motion Cognitive Decoding of Cross-Subject Motor Imagery Guided on Different Visual Stimulus Materials.

作者信息

Luo Tian-Jian, Li Jing, Li Rui, Zhang Xiang, Wu Shen-Rui, Peng Hua

机构信息

College of Computer and Cyber Security, Fujian Normal University, 350117 Fuzhou, Fujian, China.

Academy of Arts, Shaoxing University, 312000 Shaoxing, Zhejiang, China.

出版信息

J Integr Neurosci. 2024 Dec 19;23(12):218. doi: 10.31083/j.jin2312218.

Abstract

BACKGROUND

Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding.

METHODS

To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms. To compare subject-specific variations of different visual stimuli, a novel cross-subject MI-EEG classification method was proposed for the three visual stimuli. The proposed method employed a covariance matrix centroid alignment for preprocessing of EEG samples, followed by a model agnostic meta-learning method for cross-subject MI-EEG classification.

RESULTS AND CONCLUSION

The experimental results showed that robot stimulus materials were better than arrow or human stimulus materials, with an optimal cross-subject motion cognitive decoding accuracy of 79.04%. Moreover, the proposed method produced robust classification of cross-subject MI-EEG signal decoding, showing superior results to conventional methods on collected EEG signals.

摘要

背景

运动想象(MI)在脑机接口中起着重要作用,尤其是在诱发脑电图(EEG)信号中的事件相关去同步化和同步化(ERD/S)节律方面。然而,为单个受试者执行MI任务的过程是主观的,这使得难以确定个体MI任务的实际情况,并导致在运动认知解码期间个体EEG反应存在显著差异。

方法

为了探究这个问题,我们设计了三种视觉刺激(箭头、人类和机器人),每种刺激用于呈现三种MI任务(左臂、右臂和双脚),并根据ERD/S节律评估大脑反应的差异。为了比较不同视觉刺激的个体特异性差异,针对这三种视觉刺激提出了一种新颖的跨受试者MI-EEG分类方法。所提出的方法采用协方差矩阵质心对齐对EEG样本进行预处理,随后采用一种与模型无关的元学习方法进行跨受试者MI-EEG分类。

结果与结论

实验结果表明,机器人刺激材料优于箭头或人类刺激材料,跨受试者运动认知解码的最佳准确率为79.04%。此外,所提出的方法对跨受试者MI-EEG信号解码进行了稳健的分类,在收集到的EEG信号上显示出优于传统方法的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验