Suppr超能文献

一种基于经验模型的算法,用于去除运动想象脑电数据中由运动引起的伪迹,以便使用优化的卷积神经网络模型进行分类。

An Empirical Model-Based Algorithm for Removing Motion-Caused Artifacts in Motor Imagery EEG Data for Classification Using an Optimized CNN Model.

作者信息

Megalingam Rajesh Kannan, Sankardas Kariparambil Sudheesh, Manoharan Sakthiprasad Kuttankulangara

机构信息

Humanitarian Technology (HuT) Labs, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India.

出版信息

Sensors (Basel). 2024 Nov 30;24(23):7690. doi: 10.3390/s24237690.

Abstract

Electroencephalography (EEG) is a non-invasive technique with high temporal resolution and cost-effective, portable, and easy-to-use features. Motor imagery EEG (MI-EEG) data classification is one of the key applications within brain-computer interface (BCI) systems, utilizing EEG signals from motor imagery tasks. BCI is very useful for people with severe mobility issues like quadriplegics, spinal cord injury patients, stroke patients, etc., giving them the freedom to a certain extent to perform activities without the need for a caretaker, like driving a wheelchair. However, motion artifacts can significantly affect the quality of EEG recordings. The conventional EEG enhancement algorithms are effective in removing ocular and muscle artifacts for a stationary subject but not as effective when the subject is in motion, e.g., a wheelchair user. In this research study, we propose an empirical error model-based artifact removal approach for the cross-subject classification of motor imagery (MI) EEG data using a modified CNN-based deep learning algorithm, designed to assist wheelchair users with severe mobility issues. The classification method applies to real tasks with measured EEG data, focusing on accurately interpreting motor imagery signals for practical application. The empirical error model evolved from the inertial sensor-based acceleration data of the subject in motion, the weight of the wheelchair, the weight of the subject, and the surface friction of the terrain under the wheelchair. Three different wheelchairs and five different terrains, including road, brick, concrete, carpet, and marble, are used for artifact data recording. After evaluating and benchmarking the proposed CNN and empirical model, the classification accuracy achieved is 94.04% for distinguishing between four specific classes: left, right, front, and back. This accuracy demonstrates the model's effectiveness compared to other state-of-the-art techniques. The comparative results show that the proposed approach is a potentially effective way to raise the decoding efficiency of motor imagery BCI.

摘要

脑电图(EEG)是一种具有高时间分辨率且具备成本效益、便携且易于使用等特点的非侵入性技术。运动想象脑电图(MI-EEG)数据分类是脑机接口(BCI)系统中的关键应用之一,它利用来自运动想象任务的脑电信号。BCI对患有严重行动障碍的人非常有用,如四肢瘫痪者、脊髓损伤患者、中风患者等,能在一定程度上给予他们无需护理人员就能进行活动的自由,比如驾驶轮椅。然而,运动伪影会显著影响脑电图记录的质量。传统的脑电图增强算法在去除静止受试者的眼部和肌肉伪影方面有效,但当受试者处于运动状态时,比如轮椅使用者,效果就不那么好了。在本研究中,我们提出一种基于经验误差模型的伪影去除方法,用于使用改进的基于卷积神经网络(CNN)的深度学习算法对运动想象(MI)脑电数据进行跨受试者分类,旨在帮助有严重行动障碍的轮椅使用者。该分类方法适用于带有实测脑电数据的实际任务,专注于准确解读运动想象信号以用于实际应用。经验误差模型由运动中受试者基于惯性传感器的加速度数据、轮椅重量、受试者体重以及轮椅下方地形的表面摩擦力演变而来。使用三种不同的轮椅和五种不同的地形,包括道路、砖块、混凝土、地毯和大理石,来记录伪影数据。在对所提出的CNN和经验模型进行评估和基准测试后,对于区分左、右、前、后四个特定类别,所达到的分类准确率为94.04%。与其他现有技术相比,这一准确率证明了该模型的有效性。比较结果表明,所提出的方法是提高运动想象脑机接口解码效率的一种潜在有效方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6fa/11644907/13c7dd4839be/sensors-24-07690-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验