Papadopoulos Ry, Masters Benjamin, Kundu Arpan, Maldonado Nicholas, Filatov Alexander S, Liu Yuzi, Kim Taemin, Galli Giulia, Wuttig Anna
Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, United States.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202420680. doi: 10.1002/anie.202420680. Epub 2025 Jan 16.
Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long-range and periodic arrangement of carbon atoms, thus, the characterization of graphitic carbon electrodes necessitates in-situ atomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques of in-situ attenuated total reflectance infrared spectroscopy and first-principles calculations to reveal that graphitic carbon electrodes exhibit electric-field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder. With this platform, we identify graphitic regions from amorphous domains by discovering that they demonstrate opposing electric-field-dependent infrared activity under electrochemical conditions. Our work provides a roadmap for identifying mesoscopic disorder in bulk carbon materials under potential bias.
本征结构和氧化缺陷使石墨碳电极能够在支撑能量转换和存储技术的电化学反应中发挥作用。然而,这些缺陷也会破坏碳原子的长程和周期性排列,因此,对石墨碳电极的表征需要对石墨区域与介观尺度的整体无序进行原位原子分辨。在这里,我们利用原位衰减全反射红外光谱和第一性原理计算相结合的技术,揭示石墨碳电极表现出与电场相关的红外活性,该活性对整体介观本征无序敏感。通过这个平台,我们通过发现在电化学条件下它们表现出相反的与电场相关的红外活性,从而从非晶域中识别出石墨区域。我们的工作为在电位偏置下识别块状碳材料中的介观无序提供了路线图。