Suppr超能文献

3D分子生成模型扩展了药物设计中的化学空间探索。

3D molecular generation models expand chemical space exploration in drug design.

作者信息

Xiang Yu-Ting, Huang Guang-Yi, Shi Xing-Xing, Hao Ge-Fei, Yang Guang-Fu

机构信息

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.

出版信息

Drug Discov Today. 2025 Jan;30(1):104282. doi: 10.1016/j.drudis.2024.104282. Epub 2024 Dec 28.

Abstract

Drug discovery is essential in human diseases but faces challenges because of the vast chemical space. Molecular generation models have become powerful tools to accelerate drug design by efficiently exploring chemical space. 3D molecular generation has gained popularity for explicitly incorporating spatial structural information to generate rational molecules. Herein, we summarize and compare common data sets, molecular representations, and generative strategies in 3D molecular generation. We also present case studies utilizing generative modeling for ligand design and outline future challenges in developing and applying 3D models. This work provides a reference for drug design researchers interested in 3D generative modeling.

摘要

药物发现对于人类疾病至关重要,但由于化学空间广阔而面临挑战。分子生成模型已成为通过有效探索化学空间来加速药物设计的强大工具。三维分子生成因明确纳入空间结构信息以生成合理分子而受到欢迎。在此,我们总结并比较三维分子生成中的常见数据集、分子表示和生成策略。我们还展示了利用生成建模进行配体设计的案例研究,并概述了开发和应用三维模型的未来挑战。这项工作为对三维生成建模感兴趣的药物设计研究人员提供了参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验