Xiang Yu-Ting, Huang Guang-Yi, Shi Xing-Xing, Hao Ge-Fei, Yang Guang-Fu
State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
Drug Discov Today. 2025 Jan;30(1):104282. doi: 10.1016/j.drudis.2024.104282. Epub 2024 Dec 28.
Drug discovery is essential in human diseases but faces challenges because of the vast chemical space. Molecular generation models have become powerful tools to accelerate drug design by efficiently exploring chemical space. 3D molecular generation has gained popularity for explicitly incorporating spatial structural information to generate rational molecules. Herein, we summarize and compare common data sets, molecular representations, and generative strategies in 3D molecular generation. We also present case studies utilizing generative modeling for ligand design and outline future challenges in developing and applying 3D models. This work provides a reference for drug design researchers interested in 3D generative modeling.
药物发现对于人类疾病至关重要,但由于化学空间广阔而面临挑战。分子生成模型已成为通过有效探索化学空间来加速药物设计的强大工具。三维分子生成因明确纳入空间结构信息以生成合理分子而受到欢迎。在此,我们总结并比较三维分子生成中的常见数据集、分子表示和生成策略。我们还展示了利用生成建模进行配体设计的案例研究,并概述了开发和应用三维模型的未来挑战。这项工作为对三维生成建模感兴趣的药物设计研究人员提供了参考。