Suppr超能文献

女性HER2阳性转移性乳腺癌预后模型的开发:一项基于人群的回顾性研究。

Development of prognostic models for HER2-positive metastatic breast cancer in females: a retrospective population-based study.

作者信息

Chen Yan, Qiu Yu, Shen Haoyang, Yan Shuixin, Li Jiadi, Wu Weizhu

机构信息

The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315000, China.

Health Science Center, Ningbo University, Ningbo, Zhejiang, 315000, China.

出版信息

BMC Womens Health. 2024 Dec 31;24(1):675. doi: 10.1186/s12905-024-03526-w.

Abstract

BACKGROUND

This study aimed to construct, evaluate, and validate nomograms for breast cancer-specific survival (BCSS) and overall survival (OS) prediction in patients with HER2- overexpressing (HER2+) metastatic breast cancer (MBC).

METHODS

The Surveillance, Epidemiology, and End Results (SEER) database was used to select female patients diagnosed with HER2 + MBC between 2010 and 2015. These patients were distributed into training and validation groups (7:3 ratio). Variables were screened using univariate and multivariate Cox regression analyses, and BCSS and OS nomograms were constructed to determine one-, three-, and five-year survival probabilities. The nomograms were evaluated and validated using the concordance index (C-index), time-dependent receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. Stratification was evaluated using Kaplan-Meier curves and log-rank tests based on optimal total score cut-off values. We published web-based versions of these nomograms for clinical use.

RESULTS

A total of 2,151 eligible patients were randomized into training (n = 1,505) and validation (n = 646) groups. Independent prognostic factors of BCSS and OS included: age; marital status; race; oestrogen receptor status; surgery; chemotherapy; and bone, brain, liver, and lung metastases. The C-indices for the BCSS and OS training groups were 0.707 and 0.702, respectively. The ROC, calibration, and decision curves demonstrated the strength of the nomograms. According to cut-off values, patients were categorized into low-, intermediate-, and high-risk groups, with significant differences in survival outcomes between them.

CONCLUSION

We constructed predictive nomograms and stratified risk to assess the prognosis of patients with HER2 + MBC, which could help inform therapeutic decisions.

TRIAL REGISTRATION

Not applicable.

摘要

背景

本研究旨在构建、评估和验证用于预测人表皮生长因子受体2过表达(HER2+)转移性乳腺癌(MBC)患者的乳腺癌特异性生存(BCSS)和总生存(OS)的列线图。

方法

利用监测、流行病学和最终结果(SEER)数据库选取2010年至2015年间诊断为HER2+ MBC的女性患者。这些患者按7:3的比例分为训练组和验证组。通过单因素和多因素Cox回归分析筛选变量,并构建BCSS和OS列线图以确定1年、3年和5年生存概率。使用一致性指数(C指数)、时间依赖性受试者工作特征(ROC)曲线、校准曲线和决策曲线分析对列线图进行评估和验证。基于最佳总分临界值,使用Kaplan-Meier曲线和对数秩检验评估分层情况。我们发布了这些列线图的网络版以供临床使用。

结果

共2151例符合条件的患者被随机分为训练组(n = 1505)和验证组(n = 646)。BCSS和OS的独立预后因素包括:年龄;婚姻状况;种族;雌激素受体状态;手术;化疗;以及骨、脑、肝和肺转移。BCSS和OS训练组的C指数分别为0.707和0.702。ROC曲线、校准曲线和决策曲线证明了列线图的有效性。根据临界值,患者被分为低、中、高风险组,各组生存结果存在显著差异。

结论

我们构建了预测列线图并进行风险分层以评估HER2+ MBC患者的预后,这有助于指导治疗决策。

试验注册

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b7/11687059/a2567649500e/12905_2024_3526_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验