Suppr超能文献

创伤性脑损伤后用于预后评估和继发性脑损伤检测的信号熵动态评估

Dynamic assessment of signal entropy for prognostication and secondary brain insult detection after traumatic brain injury.

作者信息

Bögli Stefan Yu, Olakorede Ihsane, Beqiri Erta, Chen Xuhang, Ercole Ari, Hutchinson Peter, Smielewski Peter

机构信息

Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.

Department of Neurology and Neurocritical Care Unit, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

出版信息

Crit Care. 2024 Dec 30;28(1):436. doi: 10.1186/s13054-024-05228-z.

Abstract

BACKGROUND

Entropy quantifies the level of disorder within a system. Low entropy reflects increased rigidity of homeostatic feedback systems possibly reflecting failure of protective physiological mechanisms like cerebral autoregulation. In traumatic brain injury (TBI), low entropy of heart rate and intracranial pressure (ICP) predict unfavorable outcome. Based on the hypothesis that entropy is a dynamically changing process, we explored the origin and value of entropy time trends.

METHODS

232 continuous recordings of arterial blood pressure and ICP of TBI patients with available clinical information and 6-month outcome (Glasgow Outcome Scale) were accessed form the Brain Physics database. Biosignal entropy was estimated as multiscale entropy (MSE) that aggregates entropy at several time scales (20 coarse graining steps starting from 0.1 Hz). MSE was calculated repeatedly for consecutive, overlapping 6 h segments. Percentage monitoring time (ptime) or dosage (duration*level/hour) below different cutoffs were evaluated against outcome using univariable and multivariable analyses, and propensity score matching. Associations to clinical and monitoring metrics were explored using correlation coefficients. Lastly, individual secondary brain insults (deviations in ICP, cerebral perfusion pressure - CPP, or pressure reactivity) were assessed in relation to changes in MSE.

RESULTS

Increased MSE abp and MSE cpp ptime (OR 1.28 (1.07-1.58) and OR 1.50 (1.16-2.03) for MSE abp and cpp respectively) and dose (OR 1.12 (1.02-1.27) and OR 1.21 (1.06-1.46) for MSE abp and cpp respectively) were associated with poor outcome even after propensity score matching within multivariable models correcting for ICP, CPP, and the pressure reactivity index. MSE trajectories differed significantly dependent on outcome. The entropy metrics displayed weak correlations to clinical parameters. Individual episodes of deranged physiology were associated with decreases in the MSE metrics from both cerebral and systemic biosignals.

CONCLUSIONS

Biosignal entropy of changes dynamically after TBI. The assessment of these variations augments individualized, dynamic, outcome prognostication and identification of secondary cerebral insults. Additionally, these explorations allow for further exploitation of the extensive physiological data lakes acquired for each TBI patient within an intensive care environment.

摘要

背景

熵量化系统内的无序程度。低熵反映了稳态反馈系统的刚性增加,这可能反映了诸如脑自动调节等保护性生理机制的失效。在创伤性脑损伤(TBI)中,心率和颅内压(ICP)的低熵预示着不良预后。基于熵是一个动态变化过程的假设,我们探讨了熵时间趋势的起源和价值。

方法

从脑物理数据库中获取了232例有可用临床信息和6个月预后(格拉斯哥预后量表)的TBI患者的动脉血压和ICP连续记录。生物信号熵估计为多尺度熵(MSE),它在几个时间尺度(从0.1Hz开始的20个粗粒化步骤)上汇总熵。对连续的、重叠的6小时段重复计算MSE。使用单变量和多变量分析以及倾向得分匹配,评估低于不同临界值的监测时间百分比(ptime)或剂量(持续时间*水平/小时)与预后的关系。使用相关系数探索与临床和监测指标的关联。最后,评估个体继发性脑损伤(ICP、脑灌注压 - CPP或压力反应性的偏差)与MSE变化的关系。

结果

即使在多变量模型中校正ICP、CPP和压力反应性指数后进行倾向得分匹配,MSE abp和MSE cpp的ptime增加(MSE abp和cpp的OR分别为1.28(1.07 - 1.58)和1.50(1.16 - 2.03))以及剂量增加(MSE abp和cpp的OR分别为1.12(1.02 - 1.27)和1.21(1.06 - 1.46))与不良预后相关。MSE轨迹因预后不同而有显著差异。熵指标与临床参数的相关性较弱。个体生理紊乱发作与脑和全身生物信号的MSE指标下降有关。

结论

TBI后生物信号熵动态变化。对这些变化的评估增强了个体化、动态的预后预测以及继发性脑损伤的识别。此外,这些探索有助于进一步利用在重症监护环境中为每个TBI患者获取的大量生理数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6235/11684064/5df62db2b2a1/13054_2024_5228_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验