Zhao Zhen, Yeoh Pauline Shan Qing, Zuo Xiaowei, Chuah Joon Huang, Chow Chee-Onn, Wu Xiang, Lai Khin Wee
Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
Front Neurol. 2024 Dec 16;15:1490829. doi: 10.3389/fneur.2024.1490829. eCollection 2024.
Alzheimer's disease (AD) is a neurodegenerative ailment that is becoming increasingly common, making it a major worldwide health concern. Effective care depends on an early and correct diagnosis, but traditional diagnostic techniques are frequently constrained by subjectivity and expensive costs. This study proposes a novel Vision Transformer-equipped Convolutional Neural Networks (VECNN) that uses three-dimensional magnetic resonance imaging to improve diagnosis accuracy. Utilizing the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, which comprised 2,248 3D MRI images and diverse patient demographics, the proposed model achieved an accuracy of 92.14%, a precision of 86.84%, a sensitivity of 93.27%, and a specificity of 89.95% in distinguishing between AD, healthy controls (HC), and moderate cognitive impairment (MCI). The findings suggest that VECNN can be a valuable tool in clinical settings, providing a non-invasive, cost-effective, and objective diagnostic technique. This research opens the door for future advancements in early diagnosis and personalized therapy for Alzheimer's Disease.
阿尔茨海默病(AD)是一种神经退行性疾病,其发病率日益上升,成为全球主要的健康问题。有效的治疗依赖于早期正确诊断,但传统诊断技术常常受到主观性和高昂成本的限制。本研究提出了一种新型的配备视觉Transformer的卷积神经网络(VECNN),该网络利用三维磁共振成像来提高诊断准确性。利用阿尔茨海默病神经影像倡议(ADNI)数据集,该数据集包含2248张三维MRI图像和不同的患者人口统计学信息,所提出的模型在区分AD、健康对照(HC)和轻度认知障碍(MCI)方面达到了92.14%的准确率、86.84%的精确率、93.27%的灵敏度和89.95%的特异性。研究结果表明,VECNN可以成为临床环境中的一种有价值的工具,提供一种非侵入性、经济高效且客观的诊断技术。这项研究为阿尔茨海默病早期诊断和个性化治疗的未来进展打开了大门。