School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, K1N 6N5, Canada; College of Computer Science and Engineering, University of Hafr Al Batin, Al Jamiah, Hafar Al Batin, 39524, Saudi Arabia.
School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, K1N 6N5, Canada.
Comput Biol Med. 2021 Nov;138:104879. doi: 10.1016/j.compbiomed.2021.104879. Epub 2021 Sep 22.
Alzheimer's disease (AD) is a neurodegenerative disease that afflicts millions of people worldwide. Early detection of AD is critical, as drug trials show a promising advantage to those patients with early diagnoses. In this study, magnetic resonance imaging (MRI) datasets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and The Open Access Series of Imaging Studies are used. Our method for performing the classification of AD is to combine a set of shearlet-based descriptors with deep features. A major challenge in classifying such MRI datasets is the high dimensionality of feature vectors because of the large number of slices of each MRI sample. Given the volumetric nature of the MRI data, we propose using the 3D shearlet transform (3D-ST), but we obtain the average of all directionalities, which reduces the dimensionality. On the other hand, we propose to leverage the capabilities of convolutional neural networks (CNN) to learn feature maps from stacked MRI slices, which generate a very compact feature vector for each MRI sample. The 3D-ST and CNN feature vectors are combined for the classification of AD. After the concatenation of the feature vectors, they are used to train a classifier. Alternatively, a custom CNN model is utilized, in which the descriptors are further processed end to end to obtain the classification model. Our experimental results show that the fusion of shearlet-based descriptors and deep features improves classification performance, especially on the ADNI dataset.
阿尔茨海默病(AD)是一种影响全球数百万人的神经退行性疾病。早期发现 AD 至关重要,因为药物试验表明,早期诊断的患者具有明显优势。在这项研究中,使用了来自阿尔茨海默病神经影像学倡议(ADNI)和开放获取成像研究系列的磁共振成像(MRI)数据集。我们执行 AD 分类的方法是将一组基于剪切波的描述符与深度特征相结合。对这类 MRI 数据集进行分类的一个主要挑战是特征向量的高维度,因为每个 MRI 样本的切片数量很多。鉴于 MRI 数据的体积性质,我们建议使用 3D 剪切波变换(3D-ST),但我们获得了所有方向的平均值,从而降低了维度。另一方面,我们建议利用卷积神经网络(CNN)的能力从堆叠的 MRI 切片中学习特征图,这为每个 MRI 样本生成一个非常紧凑的特征向量。将 3D-ST 和 CNN 特征向量结合起来进行 AD 分类。在连接特征向量后,它们用于训练分类器。或者,使用自定义 CNN 模型,其中描述符被进一步端到端处理以获得分类模型。我们的实验结果表明,基于剪切波的描述符和深度特征的融合可以提高分类性能,尤其是在 ADNI 数据集上。