Suppr超能文献

GADIFF:一种用于生成分子构象的可转移图注意力扩散模型。

GADIFF: a transferable graph attention diffusion model for generating molecular conformations.

作者信息

Wang Donghan, Dong Xu, Zhang Xueyou, Hu LiHong

机构信息

School of Information Science and Technology, Northeast Normal University, 130117 Changchun, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae676.

Abstract

The diffusion generative model has achieved remarkable performance across various research fields. In this study, we propose a transferable graph attention diffusion model, GADIFF, for a molecular conformation generation task. With adopting multiple equivariant networks in the Markov chain, GADIFF adds GIN (Graph Isomorphism Network) to acquire local information of subgraphs with different edge types (atomic bonds, bond angle interactions, torsion angle interactions, long-range interactions) and applies MSA (Multi-head Self-attention) as noise attention mechanism to capture global molecular information, which improves the representative of features. In addition, we utilize MSA to calculate dynamic noise weights to boost molecular conformation noise prediction. Upon the improvements, GADIFF achieves competitive performance compared with recently reported state-of-the-art models in terms of generation diversity(COV-R, COV-P), accuracy (MAT-R, MAT-P), and property prediction for GEOM-QM9 and GEOM-Drugs datasets. In particular, on the GEOM-Drugs dataset, the average COV-R is improved by 3.75% compared with the best baseline model at a threshold (1.25 Å). Furthermore, a transfer model named GADIFF-NCI based on GADIFF is developed to generate conformations for noncovalent interaction (NCI) molecular systems. It takes GADIFF with GEOM-QM9 dataset as a pre-trained model, and incorporates a graph encoder for learning molecular vectors at the NCI molecular level. The resulting NCI molecular conformations are reasonable, as assessed by the evaluation of conformation and property predictions. This suggests that the proposed transferable model may hold noteworthy value for the study of multi-molecular conformations. The code and data of GADIFF is freely downloaded from https://github.com/WangDHg/GADIFF.

摘要

扩散生成模型在各个研究领域都取得了显著的性能。在本研究中,我们提出了一种可转移的图注意力扩散模型GADIFF,用于分子构象生成任务。通过在马尔可夫链中采用多个等变网络,GADIFF添加了GIN(图同构网络)以获取具有不同边类型(原子键、键角相互作用、扭转角相互作用、长程相互作用)的子图的局部信息,并应用MSA(多头自注意力)作为噪声注意力机制来捕获全局分子信息,从而提高了特征的代表性。此外,我们利用MSA来计算动态噪声权重,以增强分子构象噪声预测。经过这些改进,在生成多样性(COV-R、COV-P)、准确性(MAT-R、MAT-P)以及对GEOM-QM9和GEOM-Drugs数据集的性质预测方面,GADIFF与最近报道的最先进模型相比具有竞争力。特别是,在GEOM-Drugs数据集上,在阈值(1.25 Å)下,平均COV-R比最佳基线模型提高了3.75%。此外,还开发了一种基于GADIFF的转移模型GADIFF-NCI,用于生成非共价相互作用(NCI)分子系统的构象。它将在GEOM-QM9数据集上训练的GADIFF作为预训练模型,并结合了一个图编码器,用于在NCI分子水平学习分子向量。通过对构象和性质预测的评估,结果表明所生成的NCI分子构象是合理的。这表明所提出的可转移模型可能对多分子构象的研究具有重要价值。GADIFF的代码和数据可从https://github.com/WangDHg/GADIFF免费下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54da/11684900/30fc7e2e589e/bbae676ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验