Suppr超能文献

微T-CNN:一种前沿的深度卷积神经网络揭示了超越经典位点的功能性miRNA靶标。

microT-CNN: an avant-garde deep convolutional neural network unravels functional miRNA targets beyond canonical sites.

作者信息

Zacharopoulou Elissavet, Paraskevopoulou Maria D, Tastsoglou Spyros, Alexiou Athanasios, Karavangeli Anna, Pierros Vasilis, Digenis Stefanos, Mavromati Galatea, Hatzigeorgiou Artemis G, Karagkouni Dimitra

机构信息

Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, Lamia 35131, Greece.

Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, Athens 11521, Greece.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae678.

Abstract

microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs. The multilayer sequence-based design enables the prediction of both host and virus-encoded miRNA interactions, providing for the first time up to 67% of direct genuine Epstein-Barr virus- and Kaposi's sarcoma-associated herpesvirus-derived miRNA-target pairs corresponding to one out of four binding events of virus-encoded miRNAs. microT-CNN fills the existing gap of the miRNA-target prediction by providing functional targets beyond the canonical sites, including 3' compensatory miRNA pairings, prompting 1.4-fold more validated miRNA binding events compared to other implementations and shedding light on previously unexplored facets of the miRNA interactome.

摘要

微小RNA(miRNA)是健康和疾病状态下转录后基因表达的核心调节因子。尽管经过数十年的努力,但解读miRNA靶标仍然具有挑战性,导致miRNA相互作用组不完整,miRNA功能也仅得到部分阐明。在此,我们引入了microT-CNN,这是一种前沿的深度卷积神经网络模型,它通过整合来自26种不同细胞类型的数百个组织匹配的(直接和间接)实验,推动了该领域的进展,这些实验对应于一个独特的训练和评估集,包含超过60000个miRNA结合事件和约30000个独特的miRNA-基因靶标对。基于多层序列的设计能够预测宿主和病毒编码的miRNA相互作用,首次提供了高达67%的直接真实的爱泼斯坦-巴尔病毒和卡波西肉瘤相关疱疹病毒衍生的miRNA-靶标对,对应于病毒编码miRNA四个结合事件中的一个。microT-CNN通过提供超出经典位点的功能靶标,填补了miRNA靶标预测的现有空白,包括3'补偿性miRNA配对,与其他方法相比,促使验证的miRNA结合事件增加了1.4倍,并揭示了miRNA相互作用组以前未被探索的方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/027c/11685103/8420285bfa04/bbae678f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验