Suppr超能文献

定制酸碱混合电解质结构以实现超低温下稳定的质子存储。

Tailoring Acid-Salt Hybrid Electrolyte Structure for Stable Proton Storage at Ultralow Temperature.

作者信息

Cui Zhaodi, Xu Tiezhu, Yao Tengyu, Mao Guihong, He Xiaoxi, Liu Qingsheng, Shen Laifa, Yu Yan

机构信息

Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, P. R. China.

Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, P. R. China.

出版信息

Adv Mater. 2025 Feb;37(7):e2412104. doi: 10.1002/adma.202412104. Epub 2024 Dec 31.

Abstract

The critical challenges in developing ultralow-temperature proton-based energy storage systems are enhancing the diffusion kinetics of charge carriers and inhibiting water-triggered interfacial side reactions between electrolytes and electrodes. Here an acid-salt hybrid electrolyte with a stable anion-cation-HO solvation structure that realizes unconventional proton transport at ultralow temperature is shown, which is crucial for electrodes and devices to achieve high rate-capacity and stable interface compatibility with electrodes. Through multiscale simulations and experimental investigations in the electrolyte employing ZnCl introduced into 0.2 M HSO solution, it is discovered that unique anion-cation-HO solvation structure endows the electrolyte with low-temperature-adaptive feature and favorable water network channels for rapid proton transport. In situ XRD and multiple spectroscopic techniques further reveal that the stable 3D network structure inhibits free water-triggered deleterious electrode structure distortion by immobilizing free water molecules to achieve outstanding cycling stability. Hence, VHCF//α-MoO hybrid proton capacitors deliver an unexpected capacity of 39.8 mAh g at a high current density of 1 A g (-80 °C) and steady power supply under ultralow temperatures (96% capacity retention after 1500 cycles at -80 °C). The anti-freezing hybrid electrolyte design provides an effective strategy to improve the application of energy storage devices in ultralow temperatures.

摘要

开发基于超低温质子的储能系统面临的关键挑战是提高电荷载流子的扩散动力学,并抑制电解质与电极之间由水引发的界面副反应。本文展示了一种具有稳定阴离子 - 阳离子 - HO溶剂化结构的酸盐混合电解质,该结构可在超低温下实现非常规质子传输,这对于电极和器件实现高倍率容量以及与电极具有稳定的界面兼容性至关重要。通过在引入ZnCl到0.2 M HSO溶液中的电解质中进行多尺度模拟和实验研究,发现独特的阴离子 - 阳离子 - HO溶剂化结构赋予电解质低温适应性特征以及有利于快速质子传输的水网络通道。原位XRD和多种光谱技术进一步表明,稳定的三维网络结构通过固定自由水分子来抑制自由水引发的有害电极结构变形,从而实现出色的循环稳定性。因此,VHCF//α-MoO混合质子电容器在1 A g的高电流密度下(-80°C)可提供39.8 mAh g的意外容量,并在超低温下实现稳定供电(在-80°C下1500次循环后容量保持率为96%)。抗冻混合电解质设计为改善储能器件在超低温下的应用提供了一种有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验