Choi Jiwoo, Zheng Qindong, Abdelaziz Mohamed E M K, Dysli Thomas, Bautista-Salinas Daniel, Leber Andreas, Jiang Shan, Zhang Jianan, Demircali Ali Anil, Zhao Jinshi, Liu Yue, Linton Nick W F, Sorin Fabien, Jia Xiaoting, Yeatman Eric M, Yang Guang-Zhong, Temelkuran Burak
Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
The Hamlyn Center, Institution of Global Health Innovation, Imperial College London, London, SW7 2AZ, UK.
Adv Healthc Mater. 2025 Apr;14(10):e2403235. doi: 10.1002/adhm.202403235. Epub 2024 Dec 31.
Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed. Rheological and differential scanning calorimetry analyses are conducted to assess SMP's compatibility with the proposed thermal drawing process and applications, leading to the production of multilumen, multimaterial SMPFs activated at body temperature. Different properties of SMPFs are investigated in three medical devices: stiffness-adjustable catheters, softening neural interface, and shape-programmable cochlear implants. Comprehensive characterization of these devices demonstrates the potential of thermally drawn SMPs to be employed in a wide range of applications demanding programmable mechanical properties.
尽管形状记忆聚合物(SMP)具有显著优势,但材料加工和生产方面的挑战限制了其应用。纤维制造领域的最新进展为聚合物加工提供了一种新方法,拓展了纤维在光学应用之外的功能。在本研究中,开发了一种用于SMP的热拉伸技术,以制造针对医疗应用定制的形状记忆聚合物纤维(SMPF),其具有可编程的刚度和形状控制特性。进行了流变学和差示扫描量热法分析,以评估SMP与所提出的热拉伸工艺及应用的兼容性,从而生产出在体温下激活的多腔、多材料SMPF。在三种医疗设备中研究了SMPF的不同特性:刚度可调导管、软化神经接口和形状可编程人工耳蜗。对这些设备的全面表征证明了热拉伸SMP在广泛需要可编程机械性能的应用中的潜力。