Suppr超能文献

迈向绿色液氮肥料合成:等离子体驱动的氮氧化和部分电催化还原

Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma-Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction.

作者信息

Qu Zhongping, Hong Jungmi, Gao Yuting, Sun Jing, Huang Jingwen, Zhang Mingyan, Zhu Mengying, Li Tianyu, Wang Xiangyu, Gan Dingwei, Song Qiang, Zhang Tianqi, Zhou Rusen, Liu Dingxin, Cullen Patrick J, Zhou Renwu

机构信息

State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, 2006, Australia.

出版信息

Adv Sci (Weinh). 2025 Feb;12(8):e2411783. doi: 10.1002/advs.202411783. Epub 2024 Dec 31.

Abstract

Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NHNO) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air-to-NOx-to-NHNO pathway for synthesizing liquid nitrogen fertilizer. The process employs an underwater multi-bubble plasma reactor powered by nanosecond pulse to generate aqueous NOx, which is then partially reduced to NHNO through electrocatalysis. Results show that the highest NOx production rate, 786.5 mol h, is achieved when the N/O ratio closely resemble that of air, and short pulse rise/fall times significantly increase NOx yield. Further plasma diagnostic and global plasma chemistry modeling indicate that short rise/fall times facilitate simultaneous dielectric barrier discharge and spark discharge, synergistically enhancing nitrogen fixation efficiency. The partially electro-reduced liquid NHNO fertilizer significantly improves plant growth, with stem length and leaf length increasing by 91.26% and 54.72%, respectively. Cost estimation reveals that 44.22% of the production cost is attributed to electricity consumption, underscoring the potential for optimization with renewable energy integration. Overall, the study provides new insight for the sustainable production and in-place utilization of liquid nitrogen fertilizers which may advance sustainable agriculture.

摘要

液体肥料,特别是与精准灌溉系统结合使用时,为传统固体氮肥提供了一种更高效、更可持续的替代品。硝酸铵(NHNO)的工业生产因其对化石燃料的依赖而对环境有害。本研究引入了一种创新的空气制氮氧化物再制硝酸铵途径来合成液体氮肥。该过程采用由纳秒脉冲供电的水下多气泡等离子体反应器来产生水相氮氧化物,然后通过电催化将其部分还原为硝酸铵。结果表明,当氮氧比与空气的氮氧比相近时,可实现最高的氮氧化物产率,即786.5 mol/h,且短脉冲上升/下降时间可显著提高氮氧化物产量。进一步的等离子体诊断和全局等离子体化学建模表明,短上升/下降时间有利于同时发生介质阻挡放电和火花放电,协同提高固氮效率。部分电还原的液体硝酸铵肥料显著促进了植物生长,茎长和叶长分别增加了91.26%和54.72%。成本估算显示,44.22%的生产成本归因于电力消耗,这突出了通过整合可再生能源进行优化的潜力。总体而言,该研究为液体氮肥的可持续生产和就地利用提供了新的见解,这可能推动可持续农业的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df7/11848547/c2545780b5df/ADVS-12-2411783-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验