Zhang Baoli, Yang Libin, Jin Yiliang, Lu Yicheng, Li Jianru, Tang Guoheng, Liu Yang, Huo Jiawei, Xu Ran, Wang Chunru, Yan Xiyun, Li Jie, Fan Kelong
Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China.
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Adv Sci (Weinh). 2025 Feb;12(8):e2413389. doi: 10.1002/advs.202413389. Epub 2024 Dec 31.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system. Specifically, tetra[4-(amino)piperidin-1-yl]-C (TAPC) is selected as the representative aminated fullerene, and a layer-by-layer assembly strategy is designed to controllably assemble TAPC with the negatively charged HFn into a hierarchical coassembly (H@T@H) via electrostatic interactions and hydrogen bonds. In this ordered multilayer structure, the surface displayed HFn endows the inner TAPC with biocompatibility, tumor-targeting and blood-brain barrier crossing ability. Additionally, the electrostatic assembly mode enables the acid-responsive disassembly of H@T@H to release TAPC in lysosomes. In the orthotopic glioma mouse model, the HFn-assembled TAPC (H@T@H) shows higher brain accumulation and a stronger inhibitory effect on glioma than polyethylene glycol (PEG)-coated TAPC. Moreover, in an experimental metastasis mouse model, H@T@H have significant preventive and therapeutic effects on tumor metastasis. Encouragingly, the ferritin-based supramolecular assembly strategy has been proven to have broad applicability for various aminated fullerene derivatives, showing promising potential for tackling the in vivo delivery challenges of cationic drugs.
由于其具有诱人的抗肿瘤作用,胺化富勒烯衍生物正成为有前景的癌症治疗药物。然而,由于阳离子毒性,它们在体内的应用受到严重限制。为了解决这个问题,利用具有天然生物相容性的人重链铁蛋白(HFn),开发一种新型的超分子组装药物递送系统。具体而言,选择四[4-(氨基)哌啶-1-基]-C(TAPC)作为代表性的胺化富勒烯,并设计一种逐层组装策略,通过静电相互作用和氢键将TAPC与带负电荷的HFn可控地组装成分级共组装体(H@T@H)。在这种有序的多层结构中,表面展示的HFn赋予内部的TAPC生物相容性、肿瘤靶向性和血脑屏障穿越能力。此外,静电组装模式使H@T@H能够在酸性条件下解离,从而在溶酶体中释放TAPC。在原位胶质瘤小鼠模型中,HFn组装的TAPC(H@T@H)比聚乙二醇(PEG)包被的TAPC表现出更高的脑内蓄积和更强的胶质瘤抑制作用。此外,在实验性转移小鼠模型中,H@T@H对肿瘤转移具有显著的预防和治疗作用。令人鼓舞的是,基于铁蛋白的超分子组装策略已被证明对各种胺化富勒烯衍生物具有广泛的适用性,显示出应对阳离子药物体内递送挑战的巨大潜力。