Suppr超能文献

用于近无势垒超快充电水系锌离子电池的非晶态有机杂化钒氧化物

Amorphous organic-hybrid vanadium oxide for near-barrier-free ultrafast-charging aqueous zinc-ion battery.

作者信息

Liu Mingzhuang, Li Xinghua, Cui Mengxia, Chen Feiyu, Li Jiaxing, Shi Weijian, Liu Yu, Li Xiaowei, Wang Yan, Zhang Wei, Shao Changlu, Liu Yichun

机构信息

Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China.

Electron Microscopy Center, Jilin University, Changchun, 130012, China.

出版信息

Nat Commun. 2024 Dec 30;15(1):10769. doi: 10.1038/s41467-024-55000-8.

Abstract

Fast-charging metal-ion batteries are essential for advancing energy storage technologies, but their performance is often limited by the high activation energy (E) required for ion diffusion in solids. Addressing this challenge has been particularly difficult for multivalent ions like Zn. Here, we present an amorphous organic-hybrid vanadium oxide (AOH-VO), featuring one-dimensional chains arranged in a disordered structure with atomic/molecular-level pores for promoting hierarchical ion diffusion pathways and reducing Zn interactions with the solid skeleton. AOH-VO cathode demonstrates an exceptionally low E of 7.8 kJ·mol for Zn diffusion in solids and 6.3 kJ·mol across the cathode-electrolyte interface, both significantly lower than that of electrolyte (13.2 kJ·mol) in zinc ion battery. This enables ultrafast charge-discharge performance, with an Ah-level pouch cell achieving 81.3% of its capacity in just 9.5 minutes and retaining 90.7% capacity over 5000 cycles. These findings provide a promising pathway toward stable, ultrafast-charging battery technologies with near-barrier-free ion dynamics.

摘要

快速充电金属离子电池对于推进储能技术至关重要,但其性能常常受到固体中离子扩散所需的高活化能(E)的限制。对于像锌这样的多价离子而言,应对这一挑战尤为困难。在此,我们展示了一种非晶态有机杂化氧化钒(AOH-VO),其具有一维链,排列成无序结构,带有原子/分子级孔隙,用于促进分级离子扩散途径并减少锌与固体骨架的相互作用。AOH-VO阴极在固体中锌扩散的活化能极低,为7.8 kJ·mol,在阴极-电解质界面处为6.3 kJ·mol,两者均显著低于锌离子电池中电解质的活化能(13.2 kJ·mol)。这实现了超快的充放电性能,一个容量为Ah级的软包电池在仅9.5分钟内就能达到其容量的81.3%,并在5000次循环中保持90.7%的容量。这些发现为实现具有近乎无势垒离子动力学的稳定、超快充电电池技术提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88cf/11686002/83133f7c67ae/41467_2024_55000_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验