Suppr超能文献

连续解耦氧化还原电化学二氧化碳捕获

Continuous decoupled redox electrochemical CO capture.

作者信息

Liu Tao, Wang Yunpeng, Wu Yifan, Jiang Wenchuan, Deng Yuchao, Li Qing, Lan Cheng, Zhao Zhiyu, Zhu Liangyu, Yang Dongsheng, Noël Timothy, Xie Heping

机构信息

State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, P.R. China.

Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, P.R. China.

出版信息

Nat Commun. 2024 Dec 30;15(1):10920. doi: 10.1038/s41467-024-55334-3.

Abstract

Electrochemical CO capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process. Specifically, the hydrogen evolution reaction (HER) at the cathode and the oxidation of a redox carrier at the anode are employed to modulate the pH of the electrolyte, thereby facilitating effective CO capture. By decoupling the electrochemical swing for CO capture from redox carrier regeneration in both temporal and spatial domains, this approach mitigates unwanted side reactions and enhances system stability. Our results demonstrate a stable CO capture process sustained for over 200 h, with a electrical work of 49.16 kJ mol CO at a current density of 10 mA cm. Furthermore, a scaled-up system capable of producing approximately 0.4 kg of pure CO per day maintained stable operation for 72 h, highlighting the potential feasibility of this method for large-scale decarbonization applications.

摘要

由可再生电力驱动的电化学二氧化碳捕获在高效脱碳方面具有巨大潜力。然而,目前这种方法的广泛应用受到诸如稳定性、连续性、高能源需求以及扩大规模方面的挑战等问题的限制。在本研究中,我们提出了一种可扩展策略,通过将传统的单步电化学氧化还原反应转变为逐步的电化学 - 化学氧化还原过程来解决这些限制。具体而言,利用阴极的析氢反应(HER)和阳极氧化还原载体的氧化来调节电解质的pH值,从而促进有效的二氧化碳捕获。通过在时间和空间域中将用于二氧化碳捕获的电化学摆动与氧化还原载体再生解耦,这种方法减轻了不必要的副反应并提高了系统稳定性。我们的结果表明,在10 mA cm的电流密度下,稳定的二氧化碳捕获过程可持续超过200小时,每摩尔二氧化碳的电功为49.16 kJ。此外,一个每天能够生产约0.4千克纯二氧化碳的放大系统保持了72小时的稳定运行,突出了这种方法在大规模脱碳应用中的潜在可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8551/11686173/761d0d62edf9/41467_2024_55334_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验