Suppr超能文献

稳态可塑性在局灶性中风损伤后关键脑动力学中的作用。

Role of homeostatic plasticity in critical brain dynamics following focal stroke lesions.

作者信息

Rocha Rodrigo P, Zorzi Marco, Corbetta Maurizio

机构信息

Departamento de Física, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.

Department of General Psychology and Padova Neuroscience Center, Università di Padova, Padova, Italy.

出版信息

Sci Rep. 2024 Dec 30;14(1):31631. doi: 10.1038/s41598-024-80196-6.

Abstract

Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun. 13, 2022). The loss of criticality in a cohort of stroke patients was associated with structural brain disconnections, while its recovery was accompanied by the re-modeling of specific white-matter tracts. These results were challenged by Janarek et al. (Sci. Rep. 13, 2023), who proposed an alternative interpretation for the anomalous monotonic decaying of the second cluster size, which is the neural signature originally used to infer loss of criticality. The present study tackles this controversy and provides evidence that the theoretical framework proposed by Janarek et al. cannot explain the anomalous cluster dynamics observed in our patients. Notably, this invalidates the claim that the brain maintains its critical dynamics regardless of the lesion severity. In addition, we explore biological mechanisms beyond white-matter remodeling that may facilitate the recovery of criticality over time. We considered two distinct scenarios: one where we suppress homeostatic plasticity, and another where we increase the excitability of brain regions. We find that suppressing homeostatic plasticity - specifically, the inhibition-excitation balance - disfavors the emergence of criticality. Conversely, increasing brain excitability can help to restore criticality when the latter is disrupted. Our results suggest that normalizing the excitation-inhibition balance is crucial for supporting recovery of critical brain dynamics.

摘要

局灶性脑损伤,如中风导致的损伤,会破坏关键的脑动力学吗?哪些生物学机制驱动其恢复?在最近的一项研究中,我们表明局灶性损伤会产生一种亚临界状态,这种状态会随着时间的推移与行为同步恢复(罗查等人,《自然·通讯》,2022年第13期)。一组中风患者临界性的丧失与脑结构连接中断有关,而其恢复则伴随着特定白质束的重塑。扬纳雷克等人(《科学报告》,2023年第13期)对这些结果提出了质疑,他们对第二个聚类大小的异常单调衰减提出了另一种解释,而第二个聚类大小是最初用于推断临界性丧失的神经特征。本研究解决了这一争议,并提供证据表明扬纳雷克等人提出的理论框架无法解释在我们的患者中观察到的异常聚类动态。值得注意的是,这使得无论损伤严重程度如何大脑都保持其临界动力学这一说法无效。此外,我们探索了白质重塑之外可能随着时间的推移促进临界性恢复的生物学机制。我们考虑了两种不同的情况:一种是我们抑制稳态可塑性,另一种是我们增加脑区的兴奋性。我们发现抑制稳态可塑性——特别是抑制-兴奋平衡——不利于临界性的出现。相反,当临界性被破坏时,增加脑兴奋性有助于恢复临界性。我们的结果表明,使兴奋-抑制平衡正常化对于支持关键脑动力学的恢复至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/509f/11685905/d0d7b4ee0003/41598_2024_80196_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验