Suppr超能文献

在临界状态下,全脑模型中的稳态可塑性和功能网络的涌现。

Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality.

机构信息

Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.

Dipartimento di Fisica e Astronomia, Università di Padova and INFN, via Marzolo 8, I-35131, Padova, Italy.

出版信息

Sci Rep. 2018 Oct 24;8(1):15682. doi: 10.1038/s41598-018-33923-9.

Abstract

Understanding the relationship between large-scale structural and functional brain networks remains a crucial issue in modern neuroscience. Recently, there has been growing interest in investigating the role of homeostatic plasticity mechanisms, across different spatiotemporal scales, in regulating network activity and brain functioning against a wide range of environmental conditions and brain states (e.g., during learning, development, ageing, neurological diseases). In the present study, we investigate how the inclusion of homeostatic plasticity in a stochastic whole-brain model, implemented as a normalization of the incoming node's excitatory input, affects the macroscopic activity during rest and the formation of functional networks. Importantly, we address the structure-function relationship both at the group and individual-based levels. In this work, we show that normalization of the node's excitatory input improves the correspondence between simulated neural patterns of the model and various brain functional data. Indeed, we find that the best match is achieved when the model control parameter is in its critical value and that normalization minimizes both the variability of the critical points and neuronal activity patterns among subjects. Therefore, our results suggest that the inclusion of homeostatic principles lead to more realistic brain activity consistent with the hallmarks of criticality. Our theoretical framework open new perspectives in personalized brain modeling with potential applications to investigate the deviation from criticality due to structural lesions (e.g. stroke) or brain disorders.

摘要

理解大脑大尺度结构和功能网络之间的关系仍然是现代神经科学的一个关键问题。最近,人们越来越关注研究跨不同时空尺度的同型性可塑性机制在调节网络活动和大脑功能方面的作用,以应对广泛的环境条件和大脑状态(例如,在学习、发育、衰老、神经疾病期间)。在本研究中,我们研究了在一个随机全脑模型中纳入同型性可塑性(表现为对传入节点的兴奋性输入的归一化)如何影响休息期间的宏观活动和功能网络的形成。重要的是,我们在基于组和个体的水平上解决了结构-功能关系。在这项工作中,我们表明节点兴奋性输入的归一化可以改善模型的模拟神经模式与各种脑功能数据之间的一致性。实际上,我们发现当模型控制参数处于其临界值时,匹配效果最佳,并且归一化可以最小化临界点和神经元活动模式在受试者之间的可变性。因此,我们的结果表明,纳入同型性原理可以产生更符合关键特征的现实大脑活动。我们的理论框架为个性化大脑建模开辟了新的视角,具有潜在的应用价值,可以研究由于结构损伤(例如中风)或大脑疾病而导致的偏离临界状态的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b7/6200722/0a5842688a77/41598_2018_33923_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验