Suppr超能文献

基于脑动力学数据驱动网络模型的静息态 fMRI 区域差异特征分析。

Characterization of regional differences in resting-state fMRI with a data-driven network model of brain dynamics.

机构信息

Aix-Marseille Université, INSERM, Institut de Neurosciences de Systèmes (INS), Marseille, France.

Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.

出版信息

Sci Adv. 2023 Mar 15;9(11):eabq7547. doi: 10.1126/sciadv.abq7547. Epub 2023 Mar 17.

Abstract

Model-based data analysis of whole-brain dynamics links the observed data to model parameters in a network of neural masses. Recently, studies focused on the role of regional variance of model parameters. Such analyses however necessarily depend on the properties of preselected neural mass model. We introduce a method to infer from the functional data both the neural mass model representing the regional dynamics and the region- and subject-specific parameters while respecting the known network structure. We apply the method to human resting-state fMRI. We find that the underlying dynamics can be described as noisy fluctuations around a single fixed point. The method reliably discovers three regional parameters with clear and distinct role in the dynamics, one of which is strongly correlated with the first principal component of the gene expression spatial map. The present approach opens a novel way to the analysis of resting-state fMRI with possible applications for understanding the brain dynamics during aging or neurodegeneration.

摘要

基于模型的全脑动力学数据分析将观测数据与神经网络中神经团块的模型参数联系起来。最近的研究集中在模型参数的区域方差的作用上。然而,这样的分析必然依赖于预先选择的神经团块模型的性质。我们引入了一种从功能数据中推断代表区域动力学的神经团块模型以及区域和个体特定参数的方法,同时尊重已知的网络结构。我们将该方法应用于人类静息态 fMRI。我们发现,潜在的动力学可以用单个固定点周围的噪声波动来描述。该方法可靠地发现了三个具有明确和不同作用的区域参数,其中一个与基因表达空间图谱的第一主成分强烈相关。本方法为静息态 fMRI 的分析开辟了一条新途径,可能有助于理解衰老或神经退行性变期间的大脑动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/414e/10022900/fb1f33ee238d/sciadv.abq7547-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验