Suppr超能文献

通过干涉光显微镜对噬菌体悬浮液进行实时监测以实现个性化噬菌体治疗。

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

作者信息

Lapras Benjamine, Merienne Camille, Eynaud Emma, Usseglio Léa, Marchand Chloé, Médina Mathieu, Kolenda Camille, Briot Thomas, Laurent Frédéric, Pirot Fabrice

机构信息

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Tissue Biology and Therapeutic Engineering Laboratory (LBTI), CNRS UMR 5305, 69007, Lyon, France.

出版信息

Sci Rep. 2024 Dec 30;14(1):31629. doi: 10.1038/s41598-024-79478-w.

Abstract

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate. To address these challenges, interferometric light microscopy (ILM), characterising particles (size, concentration, and visual homogeneity) within minutes, was applied herein to anti-Staphylococcus aureus myovirus phage suspensions. Particle concentration was linearly correlated with phage infectious titre (R > 0.97, slope: 3 particles/plaque forming units (PFU)) at various degrees of purification, allowing to approximate the infectious titre for suspensions ≥ 3 × 10 PFU/mL, thereby encompassing most therapeutic doses. Purification narrowed and homogenised particle distribution while maintaining therapeutic concentrations. When compared to dynamic light scattering, electrophoretic mobility, and UV/Visible-spectroscopy, ILM best detected aggregates according to our homemade scoring. Although ILM has certain limitations, such as the inability to detect podoviruses (hydrodynamic diameter < 80 nm), or to measure particles in low-concentrated suspensions (< 10 particles/mL), the present proof-of-concept positions this technique as a valuable quality control tool, as a complement to titration rather than a replacement for this technique, for phage suspensions, paving the way for further investigations.

摘要

噬菌体疗法利用病毒(噬菌体)来对抗抗生素耐药性。针对特定患者菌株定制治疗方案需要各种高浓度纯化噬菌体的储备。因此,它面临着挑战:滴定持续时间以及噬菌体/细菌对的特异性;纯化影响稳定性;以及高浓度悬浮液容易聚集。为应对这些挑战,本文将干涉光显微镜(ILM)应用于抗金黄色葡萄球菌肌病毒噬菌体悬浮液,该技术可在数分钟内对颗粒(大小、浓度和视觉均匀性)进行表征。在不同纯化程度下,颗粒浓度与噬菌体感染滴度呈线性相关(R > 0.97,斜率:3个颗粒/噬菌斑形成单位(PFU)),这使得对于≥3×10 PFU/mL的悬浮液能够近似估算感染滴度,从而涵盖了大多数治疗剂量。纯化使颗粒分布变窄并均匀化,同时保持治疗浓度。与动态光散射、电泳迁移率和紫外/可见光谱相比,根据我们自制的评分标准,ILM能最好地检测到聚集体。尽管ILM有一定局限性,如无法检测短尾噬菌体(流体动力学直径<80 nm),或无法测量低浓度悬浮液(<10个颗粒/mL)中的颗粒,但本概念验证将该技术定位为一种有价值的质量控制工具,作为噬菌体悬浮液滴定的补充而非替代该技术,为进一步研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d18d/11686143/8be8fcd478f4/41598_2024_79478_Fig1_HTML.jpg

相似文献

3
Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice.
Folia Microbiol (Praha). 2020 Apr;65(2):339-351. doi: 10.1007/s12223-019-00729-9. Epub 2019 Jun 30.
4
Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale.
mSphere. 2021 Jan 13;6(1):e01263-20. doi: 10.1128/mSphere.01263-20.
5
Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy.
Appl Microbiol Biotechnol. 2019 Jun;103(11):4279-4289. doi: 10.1007/s00253-019-09810-2. Epub 2019 Apr 17.
6
Bacteriophage Therapy for the Prevention and Treatment of Fracture-Related Infection Caused by Staphylococcus aureus: a Preclinical Study.
Microbiol Spectr. 2021 Dec 22;9(3):e0173621. doi: 10.1128/spectrum.01736-21. Epub 2021 Dec 15.
7
Bioprospecting Phages with Therapeutic and Bio-Control Potential.
Viruses. 2020 Jan 23;12(2):133. doi: 10.3390/v12020133.
9
Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.
Adv Colloid Interface Sci. 2017 Nov;249:100-133. doi: 10.1016/j.cis.2017.05.014. Epub 2017 May 14.

本文引用的文献

2
Rapid assessment of changes in phage bioactivity using dynamic light scattering.
PNAS Nexus. 2023 Nov 27;2(12):pgad406. doi: 10.1093/pnasnexus/pgad406. eCollection 2023 Dec.
3
Atomic Force Microscopy of Viruses: Stability, Disassembly, and Genome Release.
Methods Mol Biol. 2024;2694:317-338. doi: 10.1007/978-1-0716-3377-9_15.
5
Phage Therapy for Diabetic Foot Infection: A Case Series.
Clin Ther. 2023 Aug;45(8):797-801. doi: 10.1016/j.clinthera.2023.06.009. Epub 2023 Jul 11.
6
An Overview of Diverse Strategies To Inactivate -Targeting Bacteriophages.
EcoSal Plus. 2023 Dec 12;11(1):eesp00192022. doi: 10.1128/ecosalplus.esp-0019-2022. Epub 2023 Jan 18.
7
Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins.
Pharmaceutics. 2022 Nov 20;14(11):2533. doi: 10.3390/pharmaceutics14112533.
8
Relationship between aggregation of therapeutic proteins and agitation parameters: Acceleration and frequency.
J Pharm Sci. 2023 Feb;112(2):492-505. doi: 10.1016/j.xphs.2022.09.022. Epub 2022 Sep 24.
9
Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review.
Pharmaceutics. 2022 Sep 13;14(9):1936. doi: 10.3390/pharmaceutics14091936.
10
Phage Therapy against : Selection and Optimization of Production Protocols of Novel Broad-Spectrum Phages.
Pharmaceutics. 2022 Sep 6;14(9):1885. doi: 10.3390/pharmaceutics14091885.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验