Suppr超能文献

使用带有Seg-UNet和去噪自动编码器的密集胶囊网络对宫颈癌进行分类。

Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders.

作者信息

Yang Hui, Aydi Walid, Innab Nisreen, Ghoneim Mohamed E, Ferrara Massimiliano

机构信息

Department of Critical Medicine, Baoshan People's Hospital, Baoshan, 678000, Yunnan Province, China.

Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.

出版信息

Sci Rep. 2024 Dec 30;14(1):31764. doi: 10.1038/s41598-024-82489-2.

Abstract

Cervical cancer is one of the deadly diseases that affects women, which requires periodic examinations to identify and treat any cancerous tumors at a preliminary stage. The most prevalent examination tool for cervical cancer prompt identification is the cervical smear (Pap smear) testing; however, due to human negligence, this examination method has an elevated probability of negative findings. Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process. Robust classification results were achieved through the pre-segmented imagery in most current investigations. Conversely, cellular grouping makes reliable cervical cellular segmentation difficult. Additionally, the deep learning methods used in the existing works perform poorly on a multiclass classification when the data distribution is skewed, which is common in the cervical cancer dataset. To mitigate these restrictions in cervical cancer research, this proposed work uses a combination of four different deep-learning methods in various phases of this research. The proposed work is segregated into five phases: pre-processing, data augmentation, segmentation, feature extraction, and classification. Contrast maximization is performed in the pre-processing phase, and the images are augmented using Multi-modal Generative Adversarial Networks (m-GAN) in the second phase. In the third phase, cervical cancer images are segmented using the Seg-UNet model, which is forwarded to the feature extraction phase that employs denoising autoencoders. Finally, the classification is implemented using the Dense CapsNet model and applied to the SIPaKMeD dataset to categorize between normal, abnormal, and benign classes. The proposed system achieves an accuracy of 99.65%, which is higher than the other works in the literature.

摘要

宫颈癌是影响女性的致命疾病之一,需要定期检查以在早期阶段识别和治疗任何癌性肿瘤。用于快速识别宫颈癌的最普遍检查工具是宫颈涂片(巴氏涂片)检测;然而,由于人为疏忽,这种检查方法出现阴性结果的概率较高。利用机器学习(ML)和深度学习(DL)进行宫颈癌分类已得到广泛研究,以改进传统诊断过程。在大多数当前研究中,通过预分割图像获得了可靠的分类结果。相反,细胞分组使得可靠的宫颈细胞分割变得困难。此外,现有工作中使用的深度学习方法在数据分布不均衡时,在多类分类上表现不佳,这在宫颈癌数据集中很常见。为了减轻宫颈癌研究中的这些限制,本研究工作在各个阶段结合使用了四种不同的深度学习方法。本研究工作分为五个阶段:预处理、数据增强、分割、特征提取和分类。在预处理阶段进行对比度最大化,在第二阶段使用多模态生成对抗网络(m-GAN)对图像进行增强。在第三阶段,使用Seg-UNet模型对宫颈癌图像进行分割,然后将其转发到采用去噪自动编码器的特征提取阶段。最后,使用密集胶囊网络(Dense CapsNet)模型进行分类,并应用于SIPaKMeD数据集,以区分正常、异常和良性类别。所提出的系统实现了99.65%的准确率,高于文献中的其他工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bba9/11686288/870be775b956/41598_2024_82489_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验