Suppr超能文献

用于快速超分辨率超声微血管成像的深度学习

Deep learning for fast super-resolution ultrasound microvessel imaging.

作者信息

Luan Shunyao, Yu Xiangyang, Lei Shuang, Ma Chi, Wang Xiao, Xue Xudong, Ding Yi, Ma Teng, Zhu Benpeng

机构信息

School of Integrated Circuits, Laboratory for optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

出版信息

Phys Med Biol. 2023 Dec 12;68(24). doi: 10.1088/1361-6560/ad0a5a.

Abstract

. Ultrasound localization microscopy (ULM) enables microvascular reconstruction by localizing microbubbles (MBs). Although ULM can obtain microvascular images that are beyond the ultimate resolution of the ultrasound (US) diffraction limit, it requires long data processing time, and the imaging accuracy is susceptible to the density of MBs. Deep learning (DL)-based ULM is proposed to alleviate these limitations, which simulated MBs at low-resolution and mapped them to coordinates at high-resolution by centroid localization. However, traditional DL-based ULMs are imprecise and computationally complex. Also, the performance of DL is highly dependent on the training datasets, which are difficult to realistically simulate.. A novel architecture called adaptive matching network (AM-Net) and a dataset generation method named multi-mapping (MMP) was proposed to overcome the above challenges. The imaging performance and processing time of the AM-Net have been assessed by simulation andexperiments.. Simulation results show that at high density (20 MBs/frame), when compared to other DL-based ULM, AM-Net achieves higher localization accuracy in the lateral/axial direction.experiment results show that the AM-Net can reconstruct ∼24.3m diameter micro-vessels and separate two ∼28.3m diameter micro-vessels. Furthermore, when processing a 128 × 128 pixels image in simulation experiments and an 896 × 1280 pixels imageexperiment, the processing time of AM-Net is ∼13 s and ∼33 s, respectively, which are 0.3-0.4 orders of magnitude faster than other DL-based ULM.. We proposes a promising solution for ULM with low computing costs and high imaging performance.

摘要

超声定位显微镜(ULM)通过对微泡(MBs)进行定位来实现微血管重建。尽管ULM能够获取超越超声(US)衍射极限的微血管图像,但其数据处理时间长,且成像精度易受MBs密度影响。基于深度学习(DL)的ULM被提出来缓解这些局限性,它在低分辨率下模拟MBs,并通过质心定位将它们映射到高分辨率坐标。然而,传统基于DL的ULM不精确且计算复杂。此外,DL的性能高度依赖于训练数据集,而这些数据集难以进行真实模拟。一种名为自适应匹配网络(AM-Net)的新型架构和一种名为多映射(MMP)的数据集生成方法被提出来克服上述挑战。已通过模拟和实验评估了AM-Net的成像性能和处理时间。模拟结果表明,在高密度(20个MBs/帧)下,与其他基于DL的ULM相比,AM-Net在横向/轴向方向上实现了更高的定位精度。实验结果表明,AM-Net能够重建直径约为24.3μm的微血管,并分离出两个直径约为28.3μm的微血管。此外,在模拟实验中处理128×128像素的图像以及在实验中处理896×1280像素的图像时,AM-Net的处理时间分别约为13秒和33秒,比其他基于DL的ULM快0.3 - 0.4个数量级。我们为具有低计算成本和高成像性能的ULM提出了一种有前景的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验